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ABSTRACT

An analytical investigation of dynamic buckling of eccentri-

cally reinforced circular cylindrical shells is carried out.

The stringer and ring stiffeners are assumed to be closely-

spaced, and general instability is investigated by an "equi-

valent shell" approach in that the reinforcement effects are

smeared-out over their spacing distances.

A new set of field equations (equilibrium and compatibility)

is derived on the basis of large deflection theory. Initial

imperfections and rotatory inertia are included. A radial

displacement assumption is made on the basis of expected

buckling patterns (checkerboard and diamond) which satisfies

clamped boundary conditions on an average over the circum-

ference. The initial imperfections are assumed in spatial

harmony with the total displacements. A stress function is de-

termined that satisfies the compatibility equation.

The theory is applied to a clamped reinforced shell which is

loaded axially by a controlled rate of endshortening of the

form V=_e_ Dynamic equilibrium is satisfied in the sense

of Bubnov-Galerkin which leads to a system of two second order

differential equations of the third degree in the checkerboard

and diamond buckling pattern amplitudes.

These differential equations are solved numerically for a parti-

cular shell for which static test results have been reported.

It is shown that a fourth order Runge-Kutta method leads to para-

doxial results due to instability of the numerical method.



A combined Runge-Kutta Predictor-Corrector method resolves these

paradoxes.

For "static" rates of endshortenlng, _ =0, and imperfections of

the order of manufacturing tolerances, it is shown that the

predicted buckling load is in good agreement with the repor-

ted static value.

The effects on the dynamic buckling load of rotatory inertia,

magnitude of V , size and direction of initial imperfections,
o

and time constant _ are given for a limited parameter range.

An eighth order linear Donnell-type static buckling differential

equation is derived also and then applied to the shell under

consideration. For mode numbers corresponding to those reported

in the tests, good agreement exists between predicted and measured

buckling loads.

The concept of stiffener location effectiveness is introduced

within the scope of linear classical theory and the assumption

of equal mode numbers for both reinforcement locations.

A stiffener location effectiveness optimization chart for

the particular shell clearly reveals that the increase in the

buckling load due to external stiffener location depends on

the mode numbers.



PREFACE

ii

Design advantages of using eccentrically reinforced circular

cylindrical shells have been predicted 13_ and experimentally

verified t34_ for shells which are subjected to static axial

loads.

It is the purpose of this dissertation to extend this

scope to include dynamic axial loads.

The dynamic buckling loads of a clamped reinforced circular

cylindrical shell, loaded axially by a controlled rate of

endshortening of the form V i _-_ are determined numerically.

Geometry and material parameters are used that correspond to

a particular shell for which static test results are available

[3 J.

The effects on the dynamic buckling load of rotatory

inertia, magnitude of Vo, size and direction of initial

imperfections, and time constant _ are given for this parti-

cular shell within a limited range of parameters.
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The literature on shell theory has mushroomed in the past one

to one-and-one half decades so that it becomes a major under-

taking Just to become up-to-date on what has been done.

Fortunately, some exmellent survey articles El-ll3 * exist

which make this task considerably easier. Comprehensive biblio-

graphies are available in the works [12-153.

It would be beyond the scope of this dissertation to give a

historical survey of the major contributions in shell stabili-

ty theory. A few remarks are in order, however, to indicate

the relative position of this dissertation in regard to the

overall field.

Let us restrict ourselves to cylindrical shells and discuss

static and dynamic stability investigations separately.

I. Static Stability Investisations.

The large discrepancy between theoretically predicted static

axial buckling loads on thin monocoque (unstiffened) cylindri-

cal shells and experimentally measured values has been the

topic of research of many people over many years. Large deflection

theory, imperfections, and the influence of boundary conditions

were found to explain away a good share of this discrepancy

_6-223.

Static stability investigations of stiffened cylindrical shells

are not numerous by comparison. One of the earliestanalyses

is given in FiGgge's habilitation paper [23g. During the second

,, , ,m

* Numbers within square brackets refer to the reference list
at the end.

II
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World War a program of analytical and experimental investi-

gation was initiated at the Guggenheim Aeronautical Laboratory

of the California Institute of Technology [243. These efforts

generated some empirical relations involving a combination of

loading conditions.

Let us briefly discuss some concepts peculiar to stiffened

shells. When the number of stiffening elements (stringers and

rings) is small and therefore their interbay distance at least

of the order of the buckling half wavelength, a discreet treat-

ment of the stiffening elements, interacting with the monocoque

shell, is necessary. In such cases the skin alone might buckle

between the gridwork of stiffeners (interbay buckling or local

buckling in the large). One might reduce such problems to those

of panel stability with boundary conditions corresponding to

stiffeners of varying degrees of fixity. A great deal of design

information of this kind is available in the NACA "Handbook

of Structural Stability" E25_. This dissertation will not be

concerned with problems of this kind.

When the number of stiffeners is large so that their Interbay

distance is small with respect to the buckling half wave-

length, buckling occurs simultaneously for both, skin and

stiffeners, and one speaks of general instability. A distributed

approach is usually taken in that the stringer- and ring stiff-

nesses are smeared-out over their interbay distances so that

an "equivalent cylindrical shell" is treated analytically.

Two more distinctions become necessary:

- The centroids of the stringers and rings lie on the middle

surface of the monocoque cylindrical shell. In this case, the
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equivalent shell is analogous to a "quasi_rthotropic"shell

with its principal elastic directions along the generators and

circles of the shell E26;27;28_.

- The above mentioned oentroids are off-set from the middle

surface. Such structural shells are called eccentrically rein-

forced shells.

In the papers K23;29;30;31_ , static stability analyses are

presented using the equivalent shell approach. Small deflection

theory is employed, while eccentricity effects are entirely

neglected. As early as 1947, Van der Neut K32S demonstrated

the importance of eccentricity in determining the buckling

strength of stiffened cylindrical shells. Unfortunately, this

early report seems to have been largely neglected. It took the

pressures of the space race to renew such interests C33-373.

The sign (inward or outward) of the eccentricity of stringers

and rings affects the magnitude of the buckling load drastically.

This has been verified experimentally C34S to the extent that

a particular externally stiffened cylinder under axial compression

has been shown to carry over twice the load sustained by its

internally stiffened counterpart. Small deflection theory is

used in all these reports except in the paper K35_. The use

of the small deflection theory for stiffened cylindrical shells

is commonly argued on the basis that imperfections are small

with respect to the equivalent shell thickness in contrast

to the monocoque shell. Experimental evidence is however lacking

to support such an assumption. In addition, it was already pointed
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out that the imperfections are only part of the story for the

monocoque shell.

2. D2namic Stabilit_ InvestiEatlons.

Prior to discussing dynamic stability, we might call attention

to some papers dealing with lateral vibrations of the monocoque

cylindrical shell in small deflection theory [38;39;403, and

stiffened cylindrical shells with the same restrictions

[36;37;413.

Almost in a class by themselves are the so-called parametric

instability problems, discussed by Evan-Iwanowski in the articles

[6;73. They have only recently been attacked, and for the most

part, for much simpler structural elements [423. In these,

disturbances (generalized loads) are of the sustained periodic

type and instability regions can be determined from the resul-

ting Hill or Mathieu differential equations. As far as cylindrical

shells are concerned, information is meager. The papers [43;443

treat the problem of parametric instability of a monocoque

cylindrical shell subjected to an axial pulsating load, using

small deflection theory. Report [453 gives results for the case

of a monocoque cylindrical shell loaded by a constant axial

force in combination with a pulsating lateral pressure, restric-

ted to small deflection theory.

As far as nonparametric dynamic stability investigations are

concerned, we might speak of those problems involving nonperi-

odic disturbances either applied laterally or axially.
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The former seems to be the easier problem while the latter

usually requires the introduction of some kind of imperfection

or eccentricity of the axial disturbance. A lateral step

pressure is applied to the monocoque cylindrical shell

in report E4_ using small deflection theory. This paper con-

tains a few Russian references on dynamic stability. The

Russians seem to be pioneers in this field, Agamirov and Volmir*

E46S have used large deflection theory to treat the mono-

coque cylindrical shell under a lateral ramp pressure and axial

compression. Little details are shown, however, for the latter

case. They give credit to Hoff _4_;48S for having initiated

dynamic buckling With the case of the column. Subsequent domestic

variations of Agamirov and Volmir's approach can be found in

the reports K50;51;52;53_. The GE-report _5_ deals with an

experimental investigation of impact of monocoque shells. It

also contains a theoretical analysis of the dynamic stability

of a monocoque cylindrical shell which is subjected to a

constant rate of endshortening in the manner of Hoff's treatment

of the column C47_. No comparison between experiments and theory

is shown. It appears furthermore that the results defy physical

reasoning in that the dynamic buckling loads show no minimum

value, but become lower and lower with increasing mode numbers.

With the exception of paper C523 which deals with transverse

nonlinear vibrations of orthotropic cylindrical shells, all

these references are restricted to monocoque cylindrical shells.

* His book on flexible plates and shells is now available in

a German translation K4_.
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3. New Features of the Present Topic.

The difficult problem of the dynamic stability of cylindrical

shells in axial compression has not been treated adequately

in the literature. Of the two references on the monocoque shell

known to the author, the first C46_ does not provide sufficient

details for Judgement, while the second C513 leads to results

which are doubtful.

The topic of the dynamic stability of eccentrically reinforced

cylindrical shells in axial compression fills therefore a gap,

not presently covered.

The author feels that this dissertation contains certain new

features and makes contributions which should lead to a better

understanding of this particular topic. Among theses, one

might list:

-Large deflection theory applied to the dynamics of the eccentri-

cally reinforced cylindrical shell.

-Inclusion of initial imperfections in connection with

eccentric stiffening.

-Derivation of new dynamic field equations with and

without initial imperfections.

-Inclusion of rotatory inertia.

-Clarification of paradoxial results obtained by inadequate

numerical integration techniques, such as used in reference _5_.

-Determination of the quantitative influence on the dynamic
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buckling load of rotatory inertia, rate of endshortening,

direction of initial imperfections and time constant of

exponentially decaying endshortening for the case of a

particular shell.

-Close agreement between predicted and tested buckling load

for the case of a particular shell in "static" reduction

of the theory.

-Derivation of a linear classical eighth order Donnell-type

differential equation for static buckling of an eccentrically

reinforced cylindrical shell.

-Evaluation of the concept of stiffener location effectiveness

with a simple graphical "optimization chart" for a particular

shell.

4.Organization and Preview.

The main body of this dissertation is divided into eight chapters.

Chapters I and II develop the governing equations from basic

principles and certain assumptions. This effort culminates in

a set of new field equations which form the basis of the rest

of the development.

Chapter III extends these field equations to include initial

imperfections.

In Chapter IV, a radial displacement assumption is made from

which a stress function is obtained that satisfies the compa-

tibility equation. The initial imperfection displacement is

assumed to be in "spatial harmony" with the total displacement.
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Boundary and closure conditions are discussed in detail.

Chapter V takes up the problem of a clamped eccentrically

reinforced cylindrical shell subjected to a controlled rate

of endshortening. The average stress resultant at the ends is

derived in terms of the buckling pattern amplitudes. The Bubnov-

Galerkin method is applied in order to satisfy the dynamic

equilibrium equation with the derived stress function and the

assumed radial displacement. There results a pair of simulta-

neous second order differential equations of the third degree

in the buckling pattern amplitudes. The remainder of the chapter

concentrates on these important equations and demonstrates

physical insight through the consideration of simplified cases,

whose solutions are also included.

In Chapter VI, numerical methods are discussed briefly and then

applied to the practical problem of a stringer shell which Card

[34] tested statically. It is clearly demonstrated that the

application of the Runge-Kutta method over the full range leads

to paradoxial results. A combined Runge-Kutta Predictor-Corrector

method resolves these paradoxes and leads to results which are

in agreement with physical intuition. The critical dynamic

buckling load is defined and a criterion is given for selecting

it. The remainder discusses the effects of various factors on

the critical dynamic buckling load.

In Chapter VII, the static buckling equations are derived in

order to present a more complete picture of the topic of the

eccentrically reinforced cylindrical shell. Prior to this

derivation, the static reduction of the dynamic theory is de-
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monstrated for Card's shell and close agreement is shown bet-

ween predicted and measured buckling load. A linear Donnell-

type eighth order differential equation is derived for static

buckling. It is then applied to Card's shell also and a compa-

rison is made between theory and test. The problem of selecting

the proper mode numbers is discussed. Finally, the concept of

stiffener location effectiveness is introduced. Under the

assumption of equal mode numbers for externally and internally

stiffened shell, an analytic expression is given for the stiffener

location effectiveness. A relatively simple graphical "optimi-

zation chart" is presented for Card's shell.

Chapter VIII presents a summary, gives conclusions and indi-

cates future work needed on this complex topic.



CHAPTER I : FORMULATION OF THE DYNAMIC EQUILIBRIUM

EQUATIONS FOR THE ECCENTRICALLY REINFORCED

CYLINDRICAL SHELL.

l0

I. Stress Resultants and Moments for the Shallow Monocoque

C?lindrical Shell.

The plane stress-straln relations of the engineering theory

of elasticity are assumed to be valid for the monocoque

shell. Denoting these stresses with superscript (m),

they are stated as,

E
/-Vz

= l__Z
(I-l)

(I-2)

related to the midsurface strains by,

where the usual symbols are used, and where the subscript T

on the strains refers to the total strain at any height

in the thickness direction z.

The strains in the middle surface are written without

subscript. It is assumed that straight lines normal to the

middle surface remain straight, unstretched and normal to the

middle surface after deformation. The total strains are then
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where W,xx, W,yy, and W,xy are the approximate changes in

curvature and twist of the midsurface, and the usual comma

notation for partial differentiation has been employed.

Figure (I-i), shown below, illustrates the chosen coordinate

system, the stresses and displacements in regard to a

monocoque shell segment of thickness h, and middle surface

radius R.

o

.Figure (I-i,) : Coordinate System, Stresses and Displacements

on a Monocoque Shell Segment.

The monocoque cylindrical shell is assumed to be shallow

(_|_< I ) such that the stress resultants, moments and

shear forces can be approximated by,

h

(I-3)
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where the superscript (m) refers again to the monocoque

shell, and the convention adopted Is shown in Figure (1-2)

below:

Figure (I-2) : Middle Surface Stress Resultants, Shear Forces

and Moments on a Monocoque Shell Segment.
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Introducing equations (1-2) into (I-I), the stress resultants

and moments can be evaluated by integrating expressions (I-3),

which yields the result i

N_'= _ _ _ _, _

(i-_)

where use has been made of certain stiffness and rigidity

parameters which are defined as:

L

K- Eh K_=vEh
I_l,,z I -I,, z

_-_= --:'k =Gh
2(/_p)

The stress resultants and moments of the monocoque

cylindrical shell can be cast into the following

matrix form:
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Nke

N_

1_4
I Ib

(ml

K K_O 0 0 01
K_K 0 O0 0

ooK, ooo

i o o o -O -_ o

0 00-g-D ooooooa, j

e

I ",,,x
i

%.(¢

,dx_ (I-6)

2. Stress Resultants and Moments for the Eccentrically

Reinforced Shallow Cylindrical Shell.

The monocoque cylindrical shell is assumed to be stiffened

by an orthogonal net of stringers and rings, parallel

to the x- and y-coordinates, the centroids of their

respective cross sectional areas being off-set from

the middle surface.

A typical reinforced shell segment is shown in Figure

(I-3) below:
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Typical Ring

Typical Stringer

Figure (l-S) : Typical Eccentrically Reinforced

Cylindrical Shell Element.

The distances between stringers, d, and rings, _, are

assumed small with respect to the buckling half wavelength

since we are interested in the general stability of the

reinforced shell. This condition may be stated as follows:

21rR.
2_

I

L
/

g a=

(I-7)

where a and b are the buckling half wavelengths in the axial

and circumferential directions, while m and 2n are the number

of half waves in these directions, L being the length of the
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reinforced shell.

It is assumed that the stringers and rings can be treated

as beams. On account of the shell being shallow, the rings

can be treated as straight beams. For rectangular cross

section rings of moderate height, it is common practice

to treat a ring as a straight beam in pure bending when the

radius of curvature-to height ratio exceeds about ten.

The condition of continuity of the strains must

be satisfied at the interfaces between monocoque shell,

stringer, and ring.

The stresses are given by,

(I-8)

where the super- and subscripts S and R refer to stringer

and ring.

When the materials are different for the monocoque

shell, stringer, and ring, there is a stress discontinuity

at the respective interfaces.

a) The Contribution of Stringers and RinKs to

the Stress Resultants.

The force, acting in the x-direction on a stringer cross

section, can be obtained by integrating the first equation
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of (1-8) over the cross sectional stringer area A S .

Similarly, integrating the second equation over the ring

cross sectional area AR, leads to the force on the ring

cross section in the y-direction. The result becomes,

where _S and _R are the centroidal distances from the

middle surface. In the above integration it was tacitly

assumed that the strains and curvature changes of the mid-

surface can be considered constant. This is Justified on

the basis that the region of the cross sectional areas covers

only a fraction of the stiffener distances, the latter

being small with respect to the buckling half wavelengths.

In order to arrive at a composite stress resultant

due to stringers and rings, let us smear-out both force

contributions over their stiffener spacings, e.g.

Any contribution to the shear stress resultant due to

stringers and rings is assumed negligible.



b) The Contribution of Stringers and Rin6s to the Moments.
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Let us take moments of the forces due to the stresses of

equations (I-8) about the local coordinate axes of the

middle surface. With due regard to the sign convention

adopted in Figure (I-2), we obtain:

where ISO is the area moment of inertia of the stringer

cross section with respect to the local y-axis of the

middle surface.

Smearing-out this moment contribution over the stringer

spacing d, the stringer component of the composite moment

per unit length is obtained. Similar considerations apply

to the ring. We thus arrive at the following expressions:

x = -
(I-I0)

Twisting of the stringer and ring _occurs due to the

twisting curvature change W,xy of the midsurface. Neglecting

any possible rigidization due to the Junction of the stiffeners

and assuming free warping, the contributions to the twisting

moment of the stringer and ring can be written as,
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w

where JS and JR are the torsion constants of the stringer

and ring cross sections and use has been made of our adopted

sign convention.

Smearing-out these twisting moment contributions over the

stiffener spacings, we obtain:

M(_J
- - w,x 

(l-n )

c) The Composite Stress Resultants and Moments of the

Eccentrically Reinforced Circular C_lindrical Shell.

By adding corresponding stress resultants and moments

from equations (I-4), (1-8), (I-I0), and (I-II), composite

stress resultants and moments are obtained. These refer

to the middle surface of the monocoque shell and can be

written as:

(I-iS )



M_x:,-I_.÷._.=-b_4g w.V

2O

(z-z2 )

Since the stress resultants and moments are related to

the middle surface strains and curvature changes, it seems

only natural to lump corresponding coefficients. This

leads to the following definitions of parameters:

(z-13)



n _ _h_

(I-13)

The K's are extensional stiffness parameters, the D's are

flexural rigidity parameters and the F's are eccentricity

force coefficients. The latter are "signed" quantities,

taken positive for internal stiffeners. ISC and IRC are

the area moments of inertia with respect to parallel

centroldal axes for stringer and ring.

Rewriting equations (1-12) with these parameters, yields:

N,,-_ -

M_a - D._s w,x_

(i-l_)
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It must be noted that the twisting moments Mxy and My x

are no longer of equal magnitude. DGS and DGR are generally

not equal. If we wish to cast (I-14) into a matrix equation,
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similar to (I-6), we can define,

and introduce:

(z-iS)

Mxy can be interpreted physically a_ an effective twisting

moment for which the differences of torsional stiffnesses

of stringers and rings are averaged out.

The stress resultants and moments of the eccentrically

reinforced circular cylindrical shell can now be written

in the following matrix form:

ml •

IV.

M
_B

0 0

o -_ o o

o o -r_o

_0 O0

o -_._-a,o

0o0o0o,

m

dx2

w,.
(I-16)

In contrast to the matrix of equation (I-6) for the monocoque

shell, the above matrix is no longer symmetric.
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3. Stress Resultants and Moments in Terms of Displacements.

Considering the radial displacements to be large in

comparison with the tangential (middle surface) displacements

u and v, the strain-displacement relations are given by:

(I-17)

The above strains are not independent of each other. They

must satisfy the compatibility equation for large deflections,

given by:

2
(I-18)

With the help of the strain-displacement relations, the

stress resultants and moments for the eccentrically reinforced

shell then become:

( 1-19 )



H_ = D._ w,_/ T

J (1-19)
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4. The. Dynamic Equilibrium Equations.

Let us formulate the dynamic equilibrium equations on the

basis of the smeared-out eccentrically reinforced shell

element of the middle surface. Figure (I-4) below illustrates

such an element.

Figure (I-4): Composite Stress Resultants and Moments of the

Smeared-out Stiffened Middle Surface Shell Element.

In addition to the composite stress resultants and moments,

the components X, Y, and Z of the surface force must be

included. The latter consist of possible traction acting in

the middle surface, pressure normal to the surface, and

d'Alembert forces per unit area due to displacement accele-
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rations. For force equilibrium in the z-direction, compo-

nents due to the change in direction of the tangential

forces are taken into account, since the deflected element

must be considered for stability analysis.

Force equilibrium in the three coordinate directions can

be written as:

N.,, ÷ N_,,,_* Z- 0

N,7,t+ Nx_,,,*Y " O

R

+ Q,,,,_+ 0_,_ . 2 = 0

(I-20)

Dynamic moment equilibrium equations are formulated about

the x- and y-axes, while moment equilibrium about the

z-axis is identically satisfied. In order to account for

d'Alembert_ or other surface moments, let us introduce _

as the composite moment per unit area about the x-axis,

measured positive in the increasing direction of W,y.

Similarly,_ is the composite moment per unit area about

the y-axis, taken positive in the increasing direction of

w, x. The two remaining moment equilibrium equations

then become:

(I-21)



Differentiating the first equation partially with respect

to y, the second with respect to x, and introducing the

result into equations(I-20), eliminates the shear forces.

Thus, there remains:

26

(z-s2)

5. Consideration of Inertia Terms and External Pressure.

Assuming no midsurface tractions, X and Y are Just the

d'Alembert forces per unit area. In addition to the external

lateral pressure p, Z also includes the d'Alembert force

per unit area. In order to calculate the latter, we need the

smeared-out mass per unit area of the composite shell, which

can be stated as:

-rh
where _ is the smeared-out mass per unit area and the

p's refer to the mass densities of the monocoque shell,

stringer and ring.
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X, Y, and Z can now be written as:

y=-_ v,_

Z = p -"_w,_

(i-24)

Let us assume that no traction forces are acting on the inner

and outer composite lateral shell surface._and_involve

then only the d'Alembert moments taken about the x- and

y-axes. In calculating the composite mass moments of inertia,

we assume again that the contribution of the stiffeners

can be smeared-out over their spacing distance._xand_ #

then become:

Introducing the centroidal area moments of inertia, these

expressions are modified to:

Defining a composite mass moment of inertia per unit length,

[,_ =io_ +.p_h_ z_+a,i_d*P" _<,A,<&'e (_-26)
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the above equations can be written as:

q

(I-27)

In the sequel, the tangential inertia forces will be

neglected. This is common practice in shell dynamics.

In essence, such a simplification amounts to assuming that

a disturbance propagates with infinite velocity in the axial

and circumferential directions. The axial and circumferential

directions are much "stiffer" elastically than the lateral

direction so that its natural frequencies are much higher

than those corresponding to the lateral direction.

Thus, the problem of wave propagation in the eccentrically

reinforced cylindrical shell will not be considered.

It is therefore assumed that,

X _ _ _" 0 (I-28)



CHAPTER II : DERIVATION OF THE FIELD EQUATIONS.
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I. The Dynamic Equilibrium Equations for

Negligible Tangential Inertia.

For vanishing X and Y, the first two equations of (I-22)

eliminate the two terms in parentheses of the third

expression of (I-22). Utilizing the third equation of

(I-24), and (I-27), the dynamic equilibrium equations

can be written as:

2. The Use of a Stress Function.

Let us introduce a stress function f(x,y,t), defined

such that the first two equations of (II-1) are identically

satisfied, e.g.

NI = f, xx (II-2)



On using equations (11-2) and (I-19), the remaining

equilibrium equation can be manipulated into the form,

3O

(11-3)

where the addi_tional flerural rigidity parameter D 2 is

defined by: '"

The tangential terms containing u and v in equation (II-3)

can be eliminated with the help of the first two equations

of (I-19), where the N's are expressed by the stress function.

After some algebra, there results,
J

where the following parameters have been used:

A,,= E,.K.,-IC_

K.

5,_" I',_A.
(II-6)



The middle surface strains can be expressed in terms of the

stress function by using equations (11-5) and the third

of (1-19). This leads to:

(11-7)

The effect of the stiffener eccentricities is represented

by the S parameters in the above expressions.

Differentiating equations (11-5) appropriately and

introducing the result into the remaining equilibrium

equation (11-3), yields:

(o,, - _ s,.)..,_] - & f...., c5,,.s,.)f..._

* @ +1o = "mw_..- I. (_,._. • _,,.)

Let us define the following additional parameters :

Z),,- O,,'(_a,, _r,,s,,)

s,, : (s,, s,,)
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(II-9)



The dynamic equilibrium equation of the eccentrically

reinforced shell therefore becomes:

(II-lO)
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3. Alternative Derivation of the Dynamlc Equilibrium

Equation from Hamilton's Principle.

The purpose of this alternative derivation is twofold:

First, it offers a check on the previously derived

equation| second, it will yield the boundary conditions

as a byproduct.

Hamilton's principle can be stated in the form,

J = 0

where T is the kinetic energy, U the strain energy, and

W the external work.

The kinetic energy can be split-up into:

(II-11)

T = T(_)+ + (II-12)

l

where the superscripted quantities refer to the _otal

kinetic energies of the monocoque shell, the stringers, and

the rings. Each of these can be expressed by:



(II-13)

where the subscript T again refers to the total quantity

at any height z.

2 2 2

where _t_Is the number of stringers and i refers to the

particular location. Similarly,

@___R _ _ Z L

where _ =_ is the number of rings.

The

(II-15)

total tangential velocities are related to those of

the middle surface by:

33

J- -
(II-16)

In keeping with the assumption of negligible tangential

inertia, we can neglect the middle surface velocity terms

u, t and v,t in the further development. As in the previous

derivation, the effects of stringers and rings are smeared-

out over their respective spacings. This means that the

summation is replaced by an integration. With these conside-

rations, the kinetic energy terms can be written as:
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(II-18)
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and similarly,

I._7/_

o o

(II-19)

The total kinetic energy of equation (II-12) then becomes,

7"=l

@@

or, on utilizing expressions (I-23) and (I-26),

// Z z
T-_ { _ w,:,..Z'_(w,_,,-w,,,,U,_,<¢¥}

oo

(II-20)

The first variation of T can be written as,

(II-21 )
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Integrating the first term by parts once, the second term

twice, and omitting some algebra, the following expression

results :
_ _ L_

4, _OO

0 -- 0

In Hamilton's principle, it is inherently assumed that _w

vanishes at tI and t2, so that, as a consequence, _W,x and

W,y are also zero. The middle term of the above expression

can thus be deleted and there remains:

_ _t L z_R

o 0 o 0

(ii-22)

The variation of the second term in equation (II-Ii) can

be written as:

(II-23)
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The stress resultants are replaced by the stress function

relations (11-2). Dn using equations (1-14), (11-6), (II-7),

and (11-9), the moments can be expressed by:

I

J
(11-24)

The variations of the strains are obtained from (1-17) as:

_- _,,___,,__,,-_ (II-25)

After substituting for the moments and strain variations,

and after considerable algebra, the first variation of the

strain energy finally becomes:

_., 4:, o O,

o (continued next page)
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In order to evaluate the first variation of the external

work, we must assume a specific loading case. Let us take

an eccentrically reinforced shell which is compressed axially

by an applied compressive load per unit length, NxA. It is

assumed that NxA is introduced at distance _ from the middle

surface. In addition, the external pressure p is acting on

the lateral surface.

The work of the external forces then becomes:

z_-R L _ _TR

o O0

(II-27)

Following (II-ii), the first variation of W becomes:

_' = #.t o O0

,_ t. z_/t z_ L

O0 0 (II-28)

By combining (II-26), (II-28), and (II-22), we finally get:



J

t;z L z_#.

t;, oo

L
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zllR o

_....)_., (-s,,f.._.s,.M -_(_,, _s..).._
( II-29 )

The above equation consists of three distinct parts:

the first part contains a double integral with respect to

x and y; the second part is characterized by an integral with

respect to x; the third part features an integral with

respect to y.

The integrand of the second part must be evaluated at the

llmits, y=0 and y=2_R. The geometric constraints (closure

conditions) of _he cylindrical shell require however that
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u; v; w; W,x; and W,y must assume identical values at y=0

and y=2_R. The same applies to their first variations.

Consequently, the integrand reduces to zero if the closur-e .....

conditions are satisfied.

The integrand of the third part has to be evaluated at x=0

and x=L (boundary conditions). Since the ends of the cylindri-

cal shell can be mounted physically in various manners, the

first variations of u; v; w; and W,x , or their multiplying

coefficients in parentheses, must assume specific values at

x=0 and x=L. Selecting these values such that each term, when

evaluated at x=0 and x=L, vanishes, leads to the following

possible choices of boundary conditions:

or _ - O at x= OiL

or V = 0 at x: OiL

W,,O at x:O;L

_ w,,,.%f,,..

- Dlll4t_ 4- N,_A j: - 0 or _x= 0 at /_=O;L ,_

(11-3o)

In terms of the stress resultants (11-2) and moments (I-27),

(11-24), these boundary conditions can be stated equivalently

as:
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IV,*N,4-° or

Nx_ = 0 or V-O

W=O

_x= 0

(II-31)

Corresponding to the physical situation, an appropriate

selection of boundary conditions from those listed above

will reduce the Integrand of the second part of (II-29)

to zero. Satisfying the closure and boundary conditions,

leaves therefore the first part of (II-29) equated to

zero. Since _ w is arbitrary, the integrand must vanish.

The latter reproduces the dynamic equilibrium equation

(II-10) obtained earlier.

The static counterparts of the boundary conditions (II-31)

are identical with those of reference [353, where the

the static equivalent of equations (II-1) was derived

on the basis of the variation of the total potential

without the use of a stress function.



4. The Field Equations.
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Since equation (II-10) involves the stress function and

the radial displacement, we need another equation to solve

the problem. This additional relation is provided by the

compatibility equation (I-18), which is repeated below:

= R (I-18)

Differentiating the strain equations (II-7) and introducing

the result into (I-18), yields:

A,,f,_. ÷z(_-A,,)f,._. 4,,f;_- s,,_
1.

(II-32)

Defining,

I AI3 (II-33)A,_= z_',

and using the last expression of (II-9), the above equation

becomes:

This equation will be referred to as the compatibility

equation for the eccentrically reinforced cylindrical

shell.



With equations (II-I0) and (II-34), we have therefore

succeeded to arrive at a complete system of equations.

These are listed together below and will be called the

field equations of the eccentrically reinforced cylindri-

cal shell:

=0
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(II-35)

5. Special Case Reductions.

If the stiffeners are arranged symmetrically about the

monocoque shell middle surface, we can speak of a quasi-

orthotropic shell. Its strain-stress function relations are

readily available from (II-7) by setting the eccentricity

parameters S to zero. Similarly, the field equations for the

quasl-orthotropic shell are obtained from (II-35) by dropping

the terms containing the eccentricity parameters. The coeffi-

cients of the field equations will be denoted with a super-

script (0) in this case.
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The reduction to the monocoque shell is also straight

forward. Table (II-i) below lists the coefficients of the

field equations as they reduce from the eccentrically

reinforced shell to the quasi-orthotropic, to the monocoque

shell.

Eccentrically
Reinforced DII DI2 D22 I SIILI S12 S22

Shell Defined b_ e_uatlons (11-9) and (II-6)

D(_ -M eoJ
Ii D12 D22Quasi-Ortho-

tropicShell

Monocoque

Shell

Eccentrically
Reinforced

Shell

0 0

i

D D D 0 0 0

ii
ii

All i AI2 A22 _ I_

Defined by eqs. (II-6),(II-33),(I-23),(i-26)

(0) l_ n {_ 6j
Quasi-0rtho- All=All AI2=AI2 A22=A22 _=i I_

tropic Shell . _,_ _ ,p_

Monocoque ! I / _3Shell ph
(

Table (II-i) : Coefficients of the Field Equations for the

Quasi-Orthotropio and Monocoque Shell.

On using the "orthotropic" coefficients, the system of field

equations for the quasi-orthotropic cylindrical shell

is written as:



(11-36)

The above equations correspond essentially to those derived

by Thielemann _i_ for the true orthotropic cylindrical

shell. His equations contain an initial imperfection dis-

placement and were derived only for the static case.

The field equations for the monocoque cylindrical shell

represent the last reduction and become with the appropriate

coefficients from Table (II-I):

(II-37)

The static counterpar_of equations (II-37) are widely known

in the literature; they may be found in Volmir's book C4_.

On reducing equations (11-37) to the static case and letting

I /
R_ , the well-kno_ yon Karman-Marguerre large deflection

plate equations are obtained.



CHAPTER III : THE FIE_D EQUATIONS FOR INITIAL!MPER__ECTIONS.

i. Modifications of the Strain-Displacement Relations,

Stress Resultants and Moments due to Initial Imperfections.

An initial imperfection displacement in the radial direction

will be considered. Let us call the latter _o}, while

we denote by w@) the total radial displacement so that the

net radial deflection w is given by w= w_ - _. Unfortunately,

this somewhat cumbersome notation is necessary in connection

with the comma-differentiation symbolism.

The strain-displacement relations for initial imperfections

are taken from Volmir_, given for the plate, and become

for the cylindrical shell:

I 2 t

(III-l)

r

These relations reduce to those of (1-17) when the initial

imperfection displacement is set to zero.

In analogy to equations (I-19), the stress resultants

and moments can be written as:



(III-2)

2. Modifications of the Field Equations due to

Initial Imperfections.

Neglecting tangential inertia forces, the dynamic equilibrium

equations can be expressed by:

(III-3)



where the so-called reduced loads involve the total dis-

placement, and where wo| has been used in the inertia terms.

This is permissible since w_ is constant with respect to time.

The first two equations of (III-3) can again be identically

satisfied by a stress function _(x,y,t), defined such that,

where _ has been used as the stress function symbol for the

case of initial imperfections in contrast to f of equations

(II-2 ).

The remaining dynamic equilibrium equation from (111-3) can be

stated as:

(III-5)

We can again eliminate the tangential displacement terms, .

Solving the first two equations of (III-2) for :'x and V,y,

yields:



(III-6)

Differentiating these expressions appropriately and

introducing the result into equation (111-5), yields

the dynamic equilibrium equation:

48

The reduction to the case of _.ero initial imperfections

transforms equation (III-7) readily back to the first of

expressions (II-35).

The strain compatibility equation with initial imperfections

is taken from Volmlr [49_, for the plate, and is modified

for the cylindrical shell to become:

The strains can be ezpressed from equations (111-6) and

(III-i) as follows:



!
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( IIZ-9 )

Differentiating these strains appropriately and introducing

the result into equation (III-8), leads to the displace-

ment compatibility as the second of the field equations.

The modified field equations for the case of initial imper-

fections thus follow as:

R

(III-lO)

/

These field equations reduce readily to those of. (II-35) when

w{@ is set to zero. using the coefficients of Table (II-l),

the field equations for initial imperfections of the quasi-

orthotropio and monocoque shell are deduced at once.



CHAPTER IV : DETERMINATION OF A STRESS FUNCTION

FROM AN ASSUMED RADIAL DISPLACEMENT.
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1. The Assumed Total and Initial Imperfection Displacements.

An exact closed-form solution to the system of fourth order

nonlinear (second degree) partial differential equations

(III-lO) is not known. We shall therefore seek an approximate

solution. One way of attempting a solution is to assume a

total and an initial radial displacement. Both of these are

then introduced into the compatibility equation of (III-10)

which results in a fourth order partial differential equation

for_ . If we can find an integral to the latter, we have

a suitable stress function which can be utilized in the

process of satisfying the dynamic equilibrium equation

of (III-10). This procedure will be given later.

In numerous static compression tests on monocoque

cylindrical shells, the "diamond" buckling pattern was usually

found in the postbuckling region. Occasionally, the "checker-

board" pattern has also been observed. There seems to be

a tendency of transition from the latter to the former.

However, in most tests, there is no uniform distribution

of a given pattern over the whole cylindrical surface, and

only a number of "bands" conform to the pattern. A pheno-

menological theory of the dynamics of transition from local

to postbuckling has been advanced by Evan-Iwanowski_ .
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For simplicity, let us assume a displacement pattern which

is distributed over the entire shell surface. The initial

and total radial displacements are assumed in the form,

(IV-l)

where
and # are defined by,

(iv-2)

The assumed form of (IV-l) implies that the imperfection

displacement is in "spatial harmony" with the total dis-

placement.

The radial displacement pattern (IV-l), and some of its

variations, have been used extensively by Volmir[49].

The first term corresponds to the "checker board" pattern,

while the second term describes the "diamond" shape.

The time-dependent amplitudes fl(t) and gl(t) allow for

a transition between the two patterns.

The shell literature is at times confusing when it comes

to symmetry considerations. Let us therefore define the con-

cepts that we shall use. We shall speak of two types of

symmetries. The first refers to rotational symmetry about

the cylinder axis, according to which a displacement is

axisymmetric when it does not depend on y. The second refers
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to symmetry with respect to the radial direction. According-

ly, the first term ("checker board" pattern) of (IV-l) is

symmetric with respect to the radial direction, while the

second term ("diamond" pattern) is asymmetric in this sense,

since the deflection is only positive inward.

The radial displacement assumption (IV-l) has been utilized

for simply-supported and clamped shells, although it satisfies

neither boundary condition exactly. VolmirC49S claims that

for shells, whose length is several times the mean radius,

the influence of the end restraints becomes negligible.

Let us consider an eccentrically reinforced circular cylindri-

cal shell which is terminated by stiff flanges on both ends.

This case is often encountered in practical applications and

corresponds to clamped boundary conditions. From the possible

choice of boundary conditions for the radial displacement

(II-31), modified for initial imperfections, we therefore

select:

Nll$- N(o) : 0 at X,t OiL

_U,_ " W(@/X = 0 at x = Oj/

(IV-3)

The radial displacement assumption (IV-l) obviously satisfies

the first boundary condition of (IV-3) at both ends exactly.

For the second set of boundary conditions we calculate:
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On account of the first term on the right hand side, the second

part of the clamped boundary conditions is not satisfied.

Taking however the average over the circumference at both

ends, we obtain : 2i.7_

'? , ,
o X"°iL X:OiL

(zv-5)

The second part of the clamped boundary conditions is there-

fore satisfied on the average.

2. The Stress Function Differential Equation.

The assumed radial displacement of the form (IV-l) is intro-

duced into the compatibility equation of (III-10), which,

after considerable algebra, results in:

(IV-6)
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Dividing the above equation by the leading coefficient,

leads to the following expression,

(IV-7)

where the following abbreviations have

QIz =

been used.

I [_{,_fo)r_<,.s,,-2.<'-p.5,,+_-'7-,,y+'(f,+,,%_.)7

+,--2._:,(+'+,-f'+')

I%--2 4,,

' {++#'(_,'-rhif,,- j,,

_,+,

(_,-pT- +"

_iltn

(zv-8)



- - "%

2,4.

(iv-8)
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3. The Derivation of a Stress Function.

Due to the nature of the trigonometric terms on the right

side of equation (IV-7), we can find an integral by assuming

a stress function that is made-up of these same trigonometric

terms. _ is therefore written in the form,

÷?_cos_x. N_s219_, ÷ a_eos2_,_eo._2flcI , ,37cos_×

--' z /%7e_ )_z

(IV-9 )

where we have added the last two terms, following Volmir[49].

It is obvious that these two terms disappear in the differenti-

ating process of (IV-7). Their physical meaning will be

discussed shortly. The A's above are determined by equating

coefficients of equal trigonometric terms when (IV-9) is

introduced into (IV-7). The somewhat tedious algebra

is omitted here and only the result is given below:



A_
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(zv-zo)

?_z=-_
svzA"A,_

/ v_v

3,z[,_ A,,,:8-_=/s%z,,-/_/3*Azz
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Let us investigate whether the so-found stress function

satisfies the boundary conditions of our problem. From

the possible boundary conditions listed in (II-30), we select

the following pair,

o

at

at

(IV-II)

where the stress function for initial imperfections, has

replaced f in (II-30).

Evaluating _l_ from (IV-9), yields:

(TV-12)

At both ends, this expression is written as:

(IV-13)

When the above expression is evaluated at x=0 and x=L, it

still remains a function of y and cannot, therefore, be equal

to a constant value, -NxA, as the boundary condition requires.

However, on taking the average value in the circumferential
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direction, we obtain:

o

(ZV-l_)

Consequently, N_ is the applied compressive load obtained

from averaging_## over the circumference. The first part

of the boundary conditions (IV-11) is therefore satisfied

on the average.

Calculating @ix_ from (IV-9), results in:

+-+4 ,i,,2,<_<,D2_,_,.8a_s,',,_,,<x,i,,_<_+<_,_o_,Z,<x_,,g¢]
( IV-iS )

At the ends, we have,

=oiL,
x=ObL

(iv-16)

which is obviously a function of y and nonvanishing.

By taking the circumferential average, however,

:°
_'O/L0

(ZV-lT)

we can satisfy the second part of the boundary conditions

(IV-11) on the average.
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4. The Conditions of Closure.

Thus far, we have seen how the boundary conditions are satis-

fied by the assumed radial displacement (IV-l) and the derived

stress function (IV-9).

In addition, the conditions of closure require that w{¢ - Wfo) ;

w0] 'x - w(0;'x; w(tJ'y - wlo]'y; u; and v should assume the

same values at y=0 and y=2_R.

Let us rewrite (IV-l) in a different form:

The y-dependence of the above equation is trigonometric and

was chosen such that the fundamental wavelength corresponds

to the circumference. This characteristic is not changed

in the differentiating process. Consequently, the conditions

of closure for the radial displacement and its first partial

derivatives with respect to x and y are therefore satisfied.

We can write more formally:

- :o
0

(Iv-19)

(IVUl8)



(IV-19)

6o

In order to check the closure conditions on u, we must deter-

mine U,y first. Integrating u,z from (III-6), we can write,

0

I z •

where the dummy variable{ replaces x of the first expression

of (III-6) andS) is a yet undetermined function of y. Let

us stipulate that u_o=O , so that, as a consequence, _=0.

U,y then becomes:
X

0

(IV-21)

On substituting the derivatives of the stress function and

the radial displacements, and after some algebra, we can

write the condition of closure as:

_R

//[ l f
o o
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( v-zz)

When the integration is performed with respect to y, each

term vanishes on account of the trigonometric terms in y.

The condition of closure on u is therefore satisfied.

For v we can write:

= 0 (IV=23)

Introducing V,y from (III-6), yields:

(IV-24)

On account of the third expression of (IV-19), the fourth

term in the above equation can be deleted immediately.
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The stress function and radial displacement terms are

substituted from (IV-9) and (IV-18). After some algebra and

cancellation of those trigonometric terms that integrate out

to zero, one obtains:

l l z

_ (:p, _kV+@,'-_;)7<os2q,<_@ -jo') <o_]

(1v-25)

Satisfaction of the condition of closure therefore requires

that the above integrand is equal to zero, or:

_'(1 l _,'jj7"" I "" 0 _ 0

When _# and _1 are inserted from (IV-10), it can readily

be shown that the coefficients of cos2_x and cos4Kx

reduce to zero. Omitting the algebraic details, we are

left with:

_,_& - A,,_._- _'_::;:-_:'@'-_:j,:_@-8o): o
(IV-26)



The condition of closure therefore relates

stress function expression (IV-9).

Solving for _, yields:

of the

63

(IV-2?)
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CHAPTER V : THE DYNAMIC EQUILIBRIUM OF AN ECCENTRICALLY

REINFORCED CYLINDRICAL SHELL SUBJECTED TO A

CONTROLLED RATE OF ENDSHORTENING.

i. Controlled Rate of Endshortening.

The endshortening of the cylindrical shell is defined by:

&

e - -f_,_ _ ¢v-l)
o

U,x is introduced from equation (III-6) so that one obtains:

(v-2)

Inserting the appropriate stress function and radial dis-

placement terms from (IV-9) and (IV-18), leads to,

L

.__ _ _A3s,.._.3p&

, N7
QIa 4

- ((f,-D)

+(_,-_.))_<_2_,_ck_, ' ,-_Cf,_,

+, (_,'-d.Jco_,i_]7d_....: . <v__>



65

where the terms containing cos 2_x and cos 4_x have been de-

leted since they vanish in the integration.

Regrouping the integrand in terms of its y-dependent com-

ponents, there results:

L

-/- $1F//'_(_ -- _"
I I

_z 2 = { l

The bracket terms associated with cos 2_y and cos 4#y

vanish when_ 8 and _ are substituted from (IV-10).

the particular case of even integers for m in _=_&---_ ,In

sin @x and sinS_x integrate out to zero so that e is not

y-dependent for a buckling pattern which divides the shell

length into an even number of axial half wavelengths.

Let us define a controlled rate of endshortening by,
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(v-5)

leads to :

3 _Z(# z.

6

dr
0

Hoff [47 3 and his associates [ 483 investigated the dynamic

buckling of columns in the form of (V-5) with a constant rate

of endshortening. Similarly, Coppa and Nash [ 51 3 used

this approach in the investigation of monocoque shells under

impact, also utilizing a constant V.

In the present analysis the following rate of endshortening

will be considered:

= e-g: (v-8)

Such an approach keeps the advantages of the previous analysis

for _ =0, e.g. for small values of V o a reduction to the

static case is possible, while for large values of V o a

fair representation of impact buckling is possible in the

(v-7)

0

where V(t) is the prescribed uniform velocity, - u,t, at x=L,

taken positive in the negative x-direction and _ is the

average endshortenlng, given by:

o

Inserting e from (V-4) and performing both integrations
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sense of Coppa and Nash, neglecting wave propagation effects.

The inclusion of a finite value for [ should improve the

"impact model" in that the velocity at the end x=L usually

decreases with time. This model might have some merits also

in the consideration of axial impact on nonrigid surfaces.

Substituting N_

equation (v-7),

2. Application of the Bubnov-Galerkin Procedure.

In order to solve the problem of the eccentrically rein-

forced cylindrical shell subjected to a controlled rate

of endshortening of the form (V-8), we must find a solution

to the field equations (III-10). The second of these, the

compatibility equation, is satisfied by the stress function

(IV-9), which was derived from the assumed radial dis-

placements (IV-l). Due to the controlled rate of endshorte-

ning(V-8), Nox and _,_ of the stress function expression

(IV-9) must be expressed by (V-9) and (IV-27).

The first of the field equations remains to be satisfied.

Restricting ourselves to the problem of controlled rate

of endshortening of an eccentrically reinforced cylindrical



shell which is terminated at both ends by rigid flanges, we

can omit the pressure term in (III-10). The satisfaction

of boundary and closure conditions has already been discussed.

The dynamic equilibrium equation will be satisfied in

the sense of Bubnov-Galerkin. For this purpose, let us

rewrite the first equation of (III-10) with p=0 in the

form:

(V=lO)

The Bubnov-Galerkin equations then become:

o o

/f Hs/n*  ' '
(2 0

(V-ll)

The evaluation of these two integrals is extremely tedious

and lengthy. Some of the details are given in Appendix A.

The result can be stated in a system of two second order

simultaneous differential equations of the third degree in

68



in fl and gl' the time-dependent amplitudes of the

"checkerboard" and "diamond" buckling patterns. This

system consists of the two equations (A-4) and (A-14) of

Appendix A and is stated below:

The coefficients B and C are defined in Appendix A.

(v-12)

J
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3. Reductio_n to the Case of D namic Bucklin of a Column.

In the case of a column the "diamond" pattern amplitude gl(t)

must be deleted so that only the first of the equations (V-12)

is retained. The latter simplies further since the coupling

terms drop out. On writing the B's with a superscript (C),

indicating column, we are left with the following equation:

8 ccj _ :c_ l-e-: t B :c_d_L:_ f; ,e, t' : *-,

The coefficients B are obtained by reduction of expressions

(A-5) through (A-11) to the monocoque shell case; then letting

R_,v_0, and on using the area moment of inertia I and the

cross sectional area A of the column (A,_.I :D_E-___.#-EJ), these
J q.



coefficients become :

C¢) _ EI _ E_ z
I

(v-14)

7o

The particular case of constant velocity of end approach is

J

obtained from (V-13) by taking the limit as _0. There results:

C_ 3

de' = J £ +B7

This equation coincides with that used by Hoff [473 for the

column. A comparison of coefficients reveals a slight discrepancy

in that Hoff has the factor 3/16 replaced by 1/4, which is not

surprising when one recalls our method of derivation and satis-

faction of boundary conditions (clamped). This difference is

minor, however, and affects primarily B5(C ! at least for fo _-_/_

where _-V_ is the radius of gyration of the column. Since

B5(C) multiplies with fl3 , this slight difference becomes sig-

nificant only in the postbuckling region.

4. The Llnearized System of Differential Equations

wlth Constant Coefficients.

Before plunging into numerical methods to integrate the system
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of equations (V-12) for a particular shell, it seems worth-

while to consider certain simplifications of these equations.

Let us therefore contemplate the linearized constant coefficient

equivalent of (V-12) which is:

) (V-16)

With the initial conditions,

(V-17)

and applying the Laplace transform method, the system becomes:

c_-e,:,__;c_)- _. _<_J- .,f:, g' c, }.,,,__8,

The determinant of the homogeneous system becomes,

z_= __- (_, ÷c,) 5_ _"&c, - B_c,

whose roots can be written as:

_e=c,'js_ __ [<e,+¢,2,(_-c; f_+(8,-¢,j,

On defining,

e= + ÷ (a,.¢=), (V-19)
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and noting from the definitions of B2 and C2 , equations (A-6)

and (A-16), that B2 and C2 are related by,

(v-2o)

we conclude that e is always a real number. Let us introduce:

_,"_--- [8,(/+_) _c, (/-e).7 "_

_ - -_Z-,_,E,'-_;.c, (/+e;] r
so that the determinant _ can be written as:

.,,=(s_. ,,,,')(?". ,_._)

(v-21)

(v-22)

Equations (V-19) and (V-21) provide some physical insight into

the system (V-16). Noting from (A-6) and (A-16) that B2 and C2

vanish for zero imperfections, we conclude that e is only slightly

more than one, being one exactly for zero imperfections.

In the latter case, (V-21) becomes,

_i -- m

r-_ 2 : - C/

(V-23)

where the superscript (0) has been added to indicate zero

imperfections. B(0) and C(0) are obtained from (A-5) and

(A-15) by deleting all terms with the factors fo and go "

They are :

_/o)=_..,,,"(_;o,,,_z__/3'o,../3.&) -_,(,_,A,,+2../_._,.+p'4,_) ,
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w(0) and w(0) are the circular natural frequencies in flexure

of the "checkerboard", respectively, the "diamond" buckling

t(v-24)

amplitudes. The influence of the eccentric reinforcements on

the natural frequencies is seen by the terms of (V-24) that

contain the A's and S's . We also note that there is no coupling

of the system (V-16), since B2 = C2 = 0 for zero imperfections.

From the previous remarks, we can expect only slight coupling

for nonvanishing imperfections. Both buckling pattern amplitudes

are therefore almost independent of each other.

Looking back at the full nonlinear system (V-12), we conclude

that interactions between the two buckling patterns occurs

mainly due to the highly nonlinear coupling.

Solving the system (V-18) by Cramer's rule for the Laplace

transformed variables _l(S) and _l(S) , there results:

f_'s) : C:5"+<,.,,'Jc_',<<,.,,"7
s(_# ,e, _#o-C,Fo)

+.(5_+,o,')Cg,"'_)

&Q
_ ¢_,,7,)(__+_,')(_, _,") (v-25)
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5, c_ c_s

Most of the terms of (V-25) have known inversions and can

be found in reference E55S, for example; others are readily

obtained by applying the convolution theorem. The inversion

of (V-25) becomes:

(V-26)
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By collecting appropriate terms, these equations may be written

where the following abbreviations have been used:
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(V-27)

The case of constant velocity of endshortening is of particular

interest. Then the above equations simplify somewhat by taking

the limit as_,0. Since these equations were found useful in

checking out one of the numerical methods that will be discussed

later, they are also listed below:

(v-28)
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The

are

superscripts

defined by:

= fo_,_-_,

(0) refer to _ being zero. The

_ B2 C_

V3coL_ cz (B,,_,_)

VJo) c_(a, ,_t)
( _, -_, ),

coefficients

( V-29 )



5. The Linearized Differential Equations for Very Small

Imperfections and Constant Rate of Endshortenin_.
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As pointed out in the previous section, the linearized system

of equations (V-12) is almost decoupled. In this section,

complete decoupling is assumed with _ being zero. This leads

to two independent linear second order differential equations

with variable coefficients of the form:

_z (V-30)

J
In order to bring these equations into a more standardized form,

the following transformations are made:

(v-31)

The derivatives become:

(V-32)
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Making use of these transformations and the derivatives, the

equations (V-30) can be written in the form:

_z I (V-33)

Use was made of the following abbreviations:

(v-3a)

The solutions to these differential equations can be shown

(v'35)
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The Ai and Bi functions are so-called Airy functions. They are

related to the one-third order Bessel functions_when the argument

is negative, as in (V-35). The reader is referred to the book K56]

for further details. In arriving at (V-35), use was made of

the property that the Wronskian of the Airy functions Ai and

Bi equals 1/_. The k's are determined from the initial conditions

such that,

#

;_=_[,%,#_'(-_)-n,,#,'(-_>)]
# (V-36)

where the R's are given by,

and where,
I

(V-38)
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Equations (V-30) provide a closed-form solution to the

differential equations (V-30), provided the Airy functions,

their derivatives and integrals can be evaluated. A tabulation

of such evaluations for an argument (negative) range from

zero to ten is given in reference C56], p.477. In the (negative)

argument range from ten to thirty, this reference lists certain

asymptotic formulas for calculating the Airy functions and

their derivatives by using certain values from the tables.

In the same argument range, the integrals can be evaluated

from asymptotic expansions given in the book _7_, P.137.

For (negative) arguments larger than thirty, the following

Asmptotic expansions may be used [5_ :

(V-39)

In the above equations _ is the generic variable and stands

for z or_ of the other expressions.
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In the (negative) argument range over thirty, the numerical

calculation of the solutions (V-35) becomes relatively simple,

using the above asymptotic expansions. From equations (V-31)

and (V-38), we can put an upper time limit on the validity

of these expansions and write:

-

C7_ I - g7

Recalling that B 6 and C7 are proportional to the constant

velocity of endshortening, V o , these equations reflect the

fact that the asymptotic expansions can be employed longer

for smaller V o .

These equations are useful in that they can give a comparison

between linear and nonlinear theory for the case of very small

imperfections and constant velocity of end approach.

For the particular case of the shell, considered in the next

chapter, it turned out that the asymptotic expansions were valid

during a portion of the time needed for dynamic buckling.

In order to solve for fl and gl for the rest of the time, a

numerical evaluation becomes more complex. This effort was

abandoned, since it involves about as much as to solve the

full nonlinear system numerically.

A comparison of the first equation of (V-30) with (V-15)

shows agreement with Hoff's linearized column equation. Hoff

C47_ solved this linearized equation numerically, using one-thlrd
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order Bessel functions without taking advantage of asymptotic

expansions.

Reconsidering the full nonlinear system (V-12) and assuming

very small imperfections and constant rate of endshortening,

we could essentially divide the time history of dynamic

buckling into three distinct periods:

a) The initial period: A comparison of the order of magnitude

shows that all nonlinear terms, and also B6flt and C7glt ,

are small in regard to the other terms. A reduction to a system

of second order differential equations with constant coeffi-

cients is possible. On neglecting coupling, two separate

equations may be solved by the method outlined in Section 5,

setting C2_B2=0.

b) The intermediate period: As time proceeds, the terms B6flt

and C7glt must be included, although the nonlinear terms may

still be negligible. This period is covered by the development

in this section. Until the end of the intermediate period

the equations are practically uncoupled.

c) The final period: The beginning of this period is character-

ized by the onset of dynamic buckling with increasing fl and

gl so that the nonlinear terms must be retained and strong

nonlinear coupling occurs between "checkerboard" and "diamond"

shape buckling amplitudes.

Having gained adequate physical insight into the governing

equations (V-12), let us go on to the numerical solution of these

equations for a particular shell.
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CHAPTER V! : NUMERICAL SOLUTION OF THE DYNAMIC BUCKLING LOAD
k

FOR CARD'S STRINGER SHELL.

1. Card's Stringer Shell.

In order to base any numerical calculation on a realistic basis,

the stringer shells, labeled cylinder 1 and 2 in Card's report

[343, will be used. Card measured the axial static buckling

load and the pertinent data are shown in Table (VI-1) below:

Q'UN I_LUHI/CUH

_'_ aLLOY

1 2024-T351

2 2024-T351

Inte- Ext. 0.0283 38 9.55 3.69

gral

Inte- Int. 0.0277 38 9.55 3.72

gral

TYPE 51"/FF. h L R A *P_,',_ @____n d _x

zz2.6 3o.5 6 1.o 800

48.0 12.9 6 _.0 1875

Table {VI-l) : Card's Stringer Shell Data from Reference [343.

A refers to the total cross sectional area (stringer + monocoque

shell), Pmax is the total load obtained by multiplying ama x

by A; n is the number of circumferentialdiamond buckles, which

corresponds to the definition used in this dissertations

A sketch of the stringer cross sectional dimensions is given

in Figure (VI-I) below:



4-p _------e

Figure (VI-1): Stringer Cross Section Dimensions
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In the calculations of this report, the slight increase in

area due to the fillet radius on the cross section is neglec-

ted. It is assumed, furthermore, that h=0.0283 in for both

cylinders, 1 and 2. The necessary geometry and material input

data are collected in Table (VI-2) below:

0

P ,. _':s_p _,.7
E_a'Ib'n7 L_S_l_nj

2.59xlO "4 2.59xlO -4

_]
1000* 2.216x10 -4

0

0 7.242x10-5.*

t;o] f;, 7
+ 0.165 *** 0

L

38.0 9.55

Table (VI-2) : Geometry and Material Input Parameters for

Numerical Calculations •of Card's Shell.
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* This number is used in the computer program to prevent _x_

from becoming zero over zero and does not actually enter into

the calculations.

** Calculated on the basis of the theory of elasticity solution

of twisting of a bar of rectangular cross section from

reference E58_, p.278, assuming free warping.

*** + for internal stiffeners, - for external stiffeners.

H

Since the data listed in Table (VI-2) are characteristic of

the particular geometry and material composition of the

eccentrically reinforced shell, they will be referred to

as geometry and material input parameters.

It will be shown in the next chapter that the theory of

the dynamic b_ckling of the eccentrically reinforced shell

with its numerical method of solution can be applied success-

fully to the static case by assuming a small constant velocity

V O •

2. The Run_e-Kutta Method of IntegratinE the Nonlinear

Coupled Differential Equations.

The dynamic buckling of a monocoque cylindrical shell was

investigated in reference E51S. A set of differential equations,

similar to (V-12), was derived. The report indicated that a

Runge-Kutta method was utilized in the numerical solution.

No details are given, however, on the type of Runge-Kutta

formula and the chosen step size.
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It is convenient at this point to work with variables that are

standard in numerical work. Let us therefore use:

r
- {, _ (vI-1)

)=_,

The nonlinear system of equations (V-12) can therefore be

written as:

,%

The classical Runge-Kutta procedure is a fourth order method,

e.g. a Taylor series expansion would agree with this method

up to and including the fourth order term. It is self-starting

in that no previous values of the function is required.

One of the serious drawbacks of the Runge-Kutta method is the

lack of simple means for estimating the error. Even if the trun-

cation error is small, a Runge-Kuttamethod may produce

extremely inaccurate results under unfavorable conditions. Roundoff

or truncation errors may become magnified as the solution is

carried out for larger and larger x, which is pointed out in

reference [59_, p.329.

Despite these disadvantage_, the method was tried out on the
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strength that it worked apparently for the case of the monocoque

shell of reference C51_.

Since F 1 and F2 of (VI-2) do not contain any first derivatives

of y and z, we can make use of some specialized formula, given

in reference C60_, p.359, for y"= f(x,y). Extending this for-

mula to a system of two simultaneous equations, we have:

_. (vI-3)

h refers here to the (constant) step size.

A computer program has been developed that calculates the B's

and C's for the geometry and material input parameters of

the particular shell under consideration for selected values

of Vo, fo' go' ( ' m and n. The first program was based

strictly on the above Runge-Kutta formulas and is not included

in this dissertation.



3. The Application of the Run_e-Kutta Method to Card's

Stringer Shell and its Paradoxial Results.
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This section discusses some results which were obtained by

using the Runge-Kutta method. A critical review of these

results, based strictly on physical insight, will reveal their

paradoxial nature. The reasoning will be backed-up by an

improved method, shown in a later section.

The geometry and material input parameters for Card's shell,

Table(VI-2), are used. A constant rate of endshortening of

100 ips and initial imperfections of the order of half the

monocoque shell thickness are assumed (fo=go=0.014 in).

Corresponding to each pair of mode numbers, m and n, there re-

sults a pair of amplitude functions,fl=fl(t) and gl=gl(t),

after integrating the system (V-12). For each pair, m and m,

an axial load Nox=Nox_(t) can be calculated from (V-9).

Of the family of curves, Nox=Nox(m;n;t), the lowest maximum

will be defined as the critical dynamic buckling load.

Figures (VI-2) to (VI-4) depict results obtained by the Runge-
I

Kutta method with a step size of l0 microseconds. The latter

constitutes only a fraction of the natural period, correspon-

ding to the lowest natural frequency of the linearized problem.

In each Figure, the so-called aspect ratio of the buckle is

kept constant. The aspect ratio is defined by:



9O

Pairs of m and n, corresponding to aspect ratios of roughly

0.8, 1.2, and 1.6, were chosen.

In considering these Figures, it must be remarked that the arrows

on the ends of the curves indicate a sharp drop of Nox to

a large negative value. This is physically not realizable,

since it implies that the ends of the shell pull apart from

each other, while they must approach each other by assumption.

It must be noted further that the maxima become lower and lower

with increasing m and n. Intuitively, however, one would associate

a "stiffer" configuration with higher modes.

The criterion for selecting the critical dynamic buckling load

obviously fails, since it is expected that the maxima will get

lower and lower with increasing mode numbers.

It is therefore apparent that the shar_ drop-off of these

curves is due to instability of the Runge-Kutta method. It is

proposed to call this phenomenon somewhat facetiously "Runge-

Kutta Buckling".

This conclusion is backed-up by Figure (VI-2_ which shows

the curve Nox=Nox(t) for m=n=12, calculated on the basis of

an improved method. Comparing it with the corresponding curve

of Figure (VI-2), the instability of the method becomes clear.

The Runge-Kutta method was also tried for small rates of end-

shortening which approach static buckling. The method became

unstable after a certain time, even though the same small

step size of i0 microseconds was maintained.

A closed-form solution, based on the system of equations of
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Figure (VI-2) :

, [ , i, I

Z 3
C sea. 

Dynamic Buckling Loads of Card's Shell by the

Runge-Kutta Method, Int.Stiffened, Incl. Rot.Iner.

Data: _=0.8 ; Vo=100 ips ;_=0 ; fo=go=0.014 in
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Figure (VI-3) : Dynamic Buckling Loads of Card's Shell by the

Runge-Kutta Method, Int .Stiff., Incl .Rot. Iner.

Data: _=1.2 ; Vo=100 ips ; _=0 ; fo=go=0.014 in.
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Figure (VI-4) : Dynamic Buckling Loads of Card's Shell by the

Runge-Kutta Method, Int.Stlff.,Incl.Rot.Iner.

Data: _=1.6 ; Vo=100 ips ;# =0 ; fo=go=0.014 in.
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Figure. (VI-2.*) : Dynamic Buckling Load of Card's Shell by the

Combined Method* Int.Stiff. Incl.Rot. Iner.

Data:_=0.8 ; Vo=100 ips ;_=0 ; fo=go=0.014 in.

* See Section 4.
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Section 5 (Linear Differential Equations with Constant Coeffi-

cients) was compared with a Runge-Kutta method solution of the

same linearized problem. For Vo=0.01 ips, fo=go=0.001 in, m=n=12

and _=0, calculations were made every l0 microseconds, up to

one millisecond. Both results compared quite favorably.

The results of reference K5_ for the monocoque cylindrical

shell, calculated on the basis of a Runge-Kutta method, are

only given for equal m=n. They exhibit the same trend that

the maxima of Nox decrease with increasing m=n. A criterion

for selecting the critical dynamic buckling load is based

on the quantity _=(fl+gl)/h=_(m;n;t). On plotting_(t) for

various m=n values, it is argued that the _ , corresponding

to the critical dynamic buckling load, is the one that departs

earliest from the time-axis and also assumes the maximum first.

The plots of the _(t) curves for various m=n show, however,

that the departure and the maximum value are attained earlier

and earlier, as m=n increases. No definite conclusion can be

reached. It is therefore strongly suspected that "Runge-Kutta

Buckling" has not been recognized in the results of reference

F_51].
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4. The Combined Runge-Kutta Predictor-Corrector Method.

A predictor-corrector method makes use of previously calculated

values of the function,_edicts the function at the next step

ahead, uses this information to correct it with an improved

value (iteration). This method is therefore not selfstarting,

but is ideal to be combined with the Runge-Kutta method.

This combination will henceforth be called simply the combined

method.

We can again take advantage of the fact that F1 and F2 of (VI-2)

do not contain the first derivatives of y and z. We select a

set of fourth order formulas, which Hamming, see reference E61_,

p.214, calls very attractive. Further details can be obtained

from this reference, since we only list these formulas:

PREDICTORS

Formulas (VI-5) use information of the current point n and

reach back three steps to predict the value one step ahead.

That value is then used in conjunction with F1 and F2 to cal-

culate the second derivatives. As seen from (VI-6), these deri-

vatives are utilized in the corrector, which also uses infor-

mation of the current point, but reaches back only one step.
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The predictor-corrector method can therefore be started, once

the first four consecutive values are known. It is therefore

only logical to calculate the first four points by the Runge-

Kutta method and then carry on with the Predictor-Corrector

procedure. This is done with the computer program given in

Appendix B, where further comments are made.

5. Apolication of the Combined Method to Card's Shell.

The Figures of the following pages present the results of

a calculation of the dynamic buckling loads of Card's shell,

using the combined method. They are based on the data: Vo=100 ips

=0; fo=go=0.014 in. The mode numbers are varied according to

the following scheme: for each fixed n (6;8;10), m is increased

in steps of 2, starting with 2 and ending with 10. The lowest

value of n was taken 6 since this corresponds to Card's static

test. Figures (VI-5) through (VI-7) present the results for

the internally reinforced shell. According to our criterion*

for critical buckling, it is clear that the lowest maximum is

obtained for m=4 and n=6, the corresponding critical dynamic

buckling load being _oxc=2456 lb/in. This amounts to about

three times the static buckling load measured by Card (See Table

(VI-1)). Corresponding to the critical dynamic buckling load,

the time histories of fl and gl are depicted in Figure (VI-8).

Similar results are given for the externally reinforced shell

in Figures (VI-9) through (VI-12). Notably, the critical dynamic

buckling load occurs now for m=4 and n=8 and amounts to

3123 lb/in.

*the critical dynamic buckling load is the lowest maximum of Nox(t )
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Figure (VI-5) Dynamic Buckling Loads of Card's Shell by the

Combined Method, Internally Stiffened, Inclu-

ding Rotatory Inertia.

Data: Vo=100 ips ; _= 0 sec-1; n=6 ;

fo=go=O.O14 in.
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Figure (VI-6) : Dynamic Buckling Loads of Card's Shell by the

Combined Method, Internally Stiffened, Inclu-

.. ding Rotatory Inertia.

Data: Vo=100 ips ; _=0 sec -1 ; n=8 ;

fo=go=0. 014 in.
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Figure (VI-7) : Dynamic Buckling Loads of Card's Shell by the

Combined Method, Internally Stiffened, Inclu-

ding Rotatory Inertia.

Data: Vo=lO0 ips ;_=0 seo -1 ; n=lO ;

fo=go=O.O14 in.
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F!sure (VI-8) Critical Buckling Amplitudes of Card's Shell

mby the Combined Method, Internally otiffen_d,

Including Rotatory Inertia.

Data: Vo=100 ips ; _=0 sec -1 ; m=4 ; n=6 ;

fo=go=O.O14 in.
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Figure (VI-9) : Dynamic Buckling Loads of Card's Shell by the

Combined Method, Externally Stiffened, Inclu-

ding Rotatory Inertia.

Data: Vo=100 ips ;_=0 sec -1 : n=6 ;

fo=go=O.O14 in.
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Figure IvI-10) : Dynamic Buckling Loads of Card's Shell by

the Combined Method, Externally Stiffened,

Including Rotatory Inertia.

Data: Vo=100 ips ;_=0 sec "l ; n=8 ;

fo=go=0.014 in.
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Figure (VI-11) : Dynamic Buckling Loads of Card's Shell by

the Combined Method, Externally Stiffened,

Including Rotatory Inertia.

Data: Vo=100 ips ; _ =0 sec -1 ; n=10 ;

fo=go=O.ol4 in.
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Figure (Vl-12): Critical Buckling Amplitudes of Card's Shell
L

_,, by the Combined Method, Externally Stiffened,
\

IncludingRotatory Inertia.

Data: Vo=100 ips ; _ = 0 sec -I ; m=4 ; n=8 ;

fo=go=0.014 in.
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It can also be concluded that the dips of the Nox(t) curves

after the first maximum are small. The smallness of the dip

seems to be due to the reinforcements. This reasoning is based

on a comparison with static data of the monocoque shell. In

the latter, the buckling load is usually plotted versus unit

endshortening. Since the rate of endshortening is constant

for the curves of our Figures, the abscissa might as well be

taken as unit endshortening. Nonlinear static monocoque curves

rise only slowly after a considerable dip to the postbuckling

value and reach soon into the super_large_deflection region.

Recalling analogous plate data, it must be concluded that the

stringer-stiffened shell has more of a plate-like behavior,

the transition being dependent on the stiffener-monocoque shell

configuration.

Considering the time histories of fl and gl of Figures (VI-8)

and (VI-12), it can be seen that theses amplitudes become

quite large after the time, when N has reached its critical
@x

value. All plots are therefore only carried out a small amount

over the critical time, since much further, even the large

deflection theory is no longer valid.

As a last remark, we observe that for large mode numbers, say

m> 6 and n> 8, the curves Nox(t) no longer attain any maximum,

in sharp contrast to the "Runge-Kutta Buckling" of Section 3.

Our intuitive physical insight, that lead to clear up the previous

paradoxial situation, is therefore confirmed by the calculations.
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6. Factors Affecting the Critical Dynamic Buckling

Load of Card's Stringer Shell.

It is quite clear that any extensive investigation of this

type requires a large amount of computer time. Within the

scope of this dissertation and the available computer time,

it is therefore not possible to consider a wide variety of

parameter changes and their effect on the results.

A modest effort was made, however, to show the influence

of the following factors:

- Rotatory Inertia

- Magnitude of Constant Rate of Endshortening

- Size of the Initial Imperfections

- Direction of Initial Imperfections

- Time Constant of Exponentially Decaying Rate of Endshortening

a) The Effect of Rotatory Inertia

The rotatory inertia affects the coefficients B and C since

_l and _2 appear in the denominator of the definitions of

these coefficients. _l is defined by eqution (A-3), while

m2 is given by (A-13). Both quatities are somewhat larger

than the smeared-out mass _, the increase being proportional

to Im and depending on the mode numbers m and n. I_ is defined

by equation (I-26). In the particular case of Card's stringer
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shell, the effect of rotatory inertia is expected to be some-

what smaller, since the contribution of the rings to I_ is

Since the increase over _ is proportional to (wL+_)absent. I_,

large mode numbers are required to make this increase consi-

derable, I_ being small for a stringer-only shell. It was

shown in the last section that critical dynamic buckling

occurs for relatively small mode numbers (m=4 ; n=6;8).

Table (VI-3) below confirms these expectations.

_n n

2 6

4 6

6 6

4 8

6 8

IH rERH_ Y 5TIF'F,
w.e. 

3834

2627

2812

* With Rotatory Inertia

3834

2449

2623

uy  rtpr

2801

_#,f *

E_i.]

4494

4615

4885

3418

W.a_2**

4494

4612

4583
3115

3412

** Without Rotatory Inertia

Table (VI-3) : Effect of Rotatory Inertia on the Dynamic

Buckling of Card's Stringer Shell.

Data: Vo=lOo ips;_=O 1/seC;fo=go=0.014 in

The critical dynamic buckling loads, which were determined

previously, are underligned in the above table.

In all cases, the effect of rotatory inertia is at most

a fraction of one percent and can therefore be neglected

in future considerations of Card's stringer shell.
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b) The Effect of the Magnitude of Constant Rate of Endshortening

The magnitude of Vo affects primarily the coefficients B6 and

C7 which are proportional to V. C8 is also influenced through

Poisson-type interaction. It is expected that smaller V o will

result in smaller critical dynamic buckling loads. With V
o

approaching the static compression testing machine range,

static buckling loads should be obtained. The latter will be

demonstrated in the next chapter.

In Table (VI-4) below, calculated results are presented for

Vo'S of 100 ips and 50 ips.

m n

/',q,rEgNN,./.y .ST/FF
Vo=1oo V,-soim

f

t ii..l

E_rE£_/ALLY 5TIFF.

2

4

6

4

6

3834

2.623

2801

2285

2347

2129

4494

4612

4583

3AZ 
3412

[e 'q
2990

4029

4287

3130

*underligned values are critical dynamic buckling loads

Table (VI-4) : Effect of V o on Dynamic Buckling Load of

Card's Shell for Constant Rate of Endshortening.

Data:_=O sec-1; fo=go=O.O14 in;Rot.Iner, negl.

These results confirm our expectations.



II0

c) The Effect of the Size of the Initial Imperfections.

It is expected that larger initial imperfections reduce the

critical dynamic buckling load more drastically than smaller

ones. In Table(VI-5) below, comparative data are presented

for dynamic buckling loads calculated on the basis of

fo=go=0.O01 in and fo=go=0.014 in, for the same constant

rate of endshortening Vo=100 ips.

n

4

4

INI'EgNAtLY. ,STIFF. G_(TE'_NALL¥ ,._'IFF

' O,OQI 0.01_ 0,00/ 0,0/_

6 4042 2449 * 7807 4612

8 3391 - 5621 Bll5

* underligned values are critical dynamic buckling loads

Table (VI-5) : Effect of the Initial Imperfection Size on

the Dynamic Buckling Loads of Card's Shell.

Data:_=O 1/sec; Vo=100 ips.

It is seen therefore that the effect of the imperfection size

is extremely important.

It must be remarked in general that only the underligned values

were minimized according to our definition of critical

dynamic buckling load. The other values are Just calculated

by using the same mode numbers and determining the first

I

maximum of Nox.
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d) The Effect of the Direction_of the Initial Imperfections.

Some interesting results may be obtained when the sign of f
O

and go is reversed. The writer realizes that the discussion

of _his section is probably only of academic interest since

existence of imperfection overshadows all other considerations.

On an intuitive basis, a sign change in fo alone should not

change anything, at least for even m's. The reason is that

the checkerboard pattern is made-up of sine waves which are

always full waves in both axial (even m's) and circumferential

directions. On an overall basis, there are as many inward

as outward half waves and the order (sign of fo ) in which they

are taken should not matter.

The sign of go does matter, however, since it is associated

with a sine-square term.

Experience has shown that diamond buckling has a preference

for inward bulging. If go is taken negative (outward), and the

same tendency is assumed, it would appear that critical dynamic

buckling is somewhat delayed, since the shell has to overcome

the small artificial outward bulge first, before it can move

inward. Since the first term of the _ox(t) expression (V-9),

is proportional to t for _=0, it can build-up to a larger

value before the other terms start to reduce it.

Numerical calculations confirm these speculations and are

presented in Table (VI-6) below. It must be noted that these

buckling values apply for fo=_0.014 in.
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_n

4

4

99

6

8

I

t/o = - 0,01_/_
, !

_o=,O,O/_m _=-ao/_,n _,=÷o,o/_*;s)
rNT.* _KT. /_1;, ExT. INF. _T.

2127 4231 1815"* 4029 2678 5184

- 3115 2129 2549 - 3663

244_ 4612

- 3n5

* INT. means internally stiffened shell.

EXT. means externally stiffened shell.

** underligned values are critical dynamic buckling loads.

Table(VI-6) : The Effect of the Direction of the Initial Imper-

fections on the Dynamic Buckling Loads of Card's

Stringer Shell.

Data: I=0 i/sec ; fo = _ 0.014 in.

The effect of negative go is therefore to increase the dynamic

buckling loads.

Figures (VI-13) and (VI-14) present the time histories of

fl and gl" In order to see the delay due to negative go'

Figure (VI-13) must be compared with Figure (VI-8) for the

same data but with positive go" The critical time, corresponding

to critical buckling, is marked on these curves.

In Figure (VI-14), fo=go=-0.014 in, and there_.....is no difference

in the gl-curves of Figures (VI-13) and (VI-14); the fl-curves

take-off in opposite directions, however, even though the same

critical dynamic buckling load results, since fl and fo enter

as squared quantities into the expression (V-9) for Nox.



n3

_- _,j ,,:6

O.300

0.200

0.I00

z a T/,_£_sx7

Figure (VI-13) : Critical Buckling Amplitudes of Card's Shell

by the Combined Method, Internally Stiffened.

Effect of Opposite Direction of Initial Imper-

fections. (Compare with Figure (VI-8))

Data: Vo=100 ips ; _=0 sec -1 ; m=4 ; n=6 ;

fo=+0.014 in ; go=-0.014 in.
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- 0.I00

- 0.2O0

Figure (VI-14) : Critical Buckling Amplitudes of Card's Shell

by the Combined Method, Internally Stiffened.

Effect of Opposite Direction of Initial Imper-

fections. (Compare with Figure (VI-8))

Data: V_=100 Ips ; _ =0 sec -1 ; m=4 ; n=6 ;

fo=go=-0.014 in.
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e) The Effect of the Time Constant of the Exponentially

Decayin_ Rate of Endshortening.

The time constant in this context is defined as the reciprocal

of _. In Table (VI-7) below, it is assumed that the time

constant is 2 msec., e.g. V O drops to 1/e of its value after

that time. This particular value is chosen since critical

buckling occurs approximately after such a duration, when

V =100 ips and constant rate of endshcrtening are assumed.
O

Calculations were made with Vo= 100 ips, _ =500 1/sec;

the results are then compared with those obtained for constant

rate of endshortening, with Vo=100 ips and Vo=50 ips.

_ rEP_ALLY .5TI :/:'EN Eb E_/'E_HA _Y 3 TI I_EH ED

Vo-mO v..sob Vo=I l "t_ t?

4 6 isil 1793 4612

4 8 - 2129 2152 3115

[ 1i,,1 [al/ 
4029 3101

2549 2324

* underligned values are critical dynamic buckling loads

Table (VI- 7) : The Effect of the Time Constant of the Expo-

nentially Decaying Rate of Endshortening

on the Dynamic Buckling Loads of Card's Shell.

Data: fo=go = 0.014 in.

For the internally stiffened shell a reduction of the critical

dynamic buckling load to roughly the values for Vo=5O ips, _ =0,

is obtained, while it is somewhat less for the externally

stiffened shell.
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CHAPTER VII : SOME COMMENTS ON THE STATIC BUCKLING PROBLEM OF

ECCENTRICALLY REINFORCED CYLINDRICAL SHELLS.

1. Prediction of the Static Buckling Load for Card's

Stringer Shell from the "Dynamic" Theory.

It is recalled that the boundary conditions of the problem

under consideration were not exactly satisfied. The clamped

boundary conditions were satisfied on the average over the

circumference.

In Card's tests, the stringer shell was ground flat at both

ends so that the ends were bearing against the flat plates

of head and base of the testing machine. It seems, therefore,

that this arrangement approaches clamped boundary conditions,

and a comparison of the calculated values from this theory

and Card's test results can be made.

The combined method was applied to predict the static buckling

load of Card's shell. Initial imperfections of fo=go=0.001 in

were assumed, accounting for careful machining of this shell.

Photographs in Card's report _ show mode numbers of m=2,

and n=6. These mode numbers were selected and a constant rate

of endshortening Vc=0.1 ips was chosen, maintaining the step

size of integration of l0 microseconds. It goes without saying

that this procedure is highly inefficient as far as computer

time is concerned, but the purpose here was to demonstrate

the reduction of the theory to the static case. For this

reason only the internally reinforced shell was considered.
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The result is presented in Figure (VII-l). Notice, that the

general area around the dip has been expanded in scale.

Buckling occurs at t=0.519 sec. with a buckling load Noxc=833 lb/in.

This compares quite favorably with Card's tested value of

800 lb/in.

2. The Static Bucklin_ E_uations.

Let us consider the field equations (II-35). On reducing these

to the static case, we can write:

Let us assume,

f- f. ,% t (vii-2)

where the quantities with subscript P refer to prebuckling-

those with B to buckling variables.

On introducing (VII-2) into (VII-l), we can subtract out

the prebuckling terms, since they must satisfy the equilibrium

and compatibility equations sparately. The prebuckling equations

therefore become:
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800

600

400

2_00

0

J

780 "

: Prediction of the Static Buckling Load of Card's

Shell from the"Dynamic" Theory, Internally

Stiffened.

Data: Vo=0.1 ips ; _ = 0 sec -1 ; m=2 ; n=6 ;

fo=go = 0.001 in.

Figure (VII-l)
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(wl-3)

The remainder yields the following equations:

0

(vzz-_)

Let us introduce:

_IXp = - {P,_#
(vzz-5)

The stress resultants Nxp and Nyp correspond to compressive

stresses.
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We assume that the prebuckling deformations, slopes and curva-

tures are small so that products of such quantities can be

neglected in (VII-4). In terms of the stress resultants (VII-5),

these: equations therefore become:

(VII-6)

Let us refer to (VII-6) as the linearized prebuckling equations.

On using the stress resultants (VII-5) in (VII-4), there :

results :

Let us call (VII-7) the buckling equations. The prebuckling-

and buckling equations presented above cover the cases of
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buckling due to axial compression, pressure and torsion, and

they are therefore quite general.

With the assumption of axisymmetric prebuckling (in absence

of torsion), the prebuckling equations can be simplified

considerably and solutions may be possible that satisfy

the given boundary conditions exactly. These prebuckling

solutions are then introduced into the nonlinear buckling

equations, whose solution must be attempted in some approximate

manner. Such solutions were carried out for the monocoque

cylindrical shell by Stein _ , Fischer _2_ , and Gorman _62].

Extensions of theses investigations to the eccentrically

reinforced cyii_drical shell should therefore also be possible.

The equations derived in this section would provide the basis

for such analyses.

3. The Linear Classical Buckling E_uations for the Eccentrically

Reinforced Cylindrical Shell in Axial Compression.

Neglecting the prebuckling deformation Wp, omitting the

torsion term with NxyP, and assuming that Nxp and Nyp do not

depend on x and y, the fourth order derivatives of fp in the

prebuckling equations disappear on account of (VII-5).

The first equation of (VII-6) yields the simple result

Nyp=pR and the second equation is identically satisfied.

For the zero pressure case, we can therefore write a linearized

version of the buckling equations (VII-7) in the form:
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R

(vii-8)

The subscript B has been droped for easier writing. Nox indi-

cates no dependency on x and y. The second equation has

been slightly rearranged to bring out term similarities

between the above two equations.

Let us define the following linear operators:

(v_-9)

With the help of these operators, we can write (VII-8)

much simpler as:

,<,f -o }
6, _ - 8. f - o

(VII-10)

On eliminating first f and then w, the following dual pair

of equations results:

(VII-ll)



The operator 4 is readily calculated from (VII-9) with

the result:

(VII-12)
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For completeness, if pressure and torsion are considered, this

operator becomes :

_, (_,,D,,.sD_' -2s,,s,_)_ .
, [ 4,,Z).,_,v-4,_D_,,-&,D,, ,2(..s,,&,._.2..s,,:2_-_-_,

(VII-13)

On letting Noxy=p=0, the latter operator reduces readily

to the former of (VII-12).
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Let us return to the case of axial compression only. The re-

duction of the operator (VII-12) to the monocoque shell case

isreadily achieved by letting Dll_D12_-D22-_D; Sll-_S12-_S22

t0 ; All-_A12---A22-_l/Eh. This operator then becomes:

(VII-I_)

With the usual operators for the monocoque case,

(VII-15)

the equation "-_W5 !U' can be written in the more familiar

form

(VII-16)

which is known in this country as the linear Donnell equation

for axiall compression of the monocoque cylindrical shell.

The same equation is given by Volmir [49], p.249, for example.

In order to find the classical static buckling load for

the eccentrically reinforced cylindrical shel_ we assume,

as in the monocoque case, a radial displacement of the

form:



_ ' _Zix s/_ *-_W _ 51ft L /_
#l'l"l _=1
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(VII-17)

If w is a solution then each term m;n satisfies 4_=0 ,

where_ is given by (VII-12).Performlng the appropriate

differentiations on w and introducing them Into _aN=O yields

the following expression:

(vii-18)

Let us define the abbreviations:

_ %7_ z

a op-(1)

(VII-19)

Solving (VII-18) for N
OX

leads to:

and using the above abbreviations



126

Nox=

_z

(Vll-20)

I

If the/_5 are reduced to the case of the monocoque shell,

there results :

/., = _

E_

v445 = --

¢'_,J

(VII-21 )

The superscript (m) refers to the monocoque shell.

Nox then becomes for the monocoque shell:

Al°x = 0Ee_'+2e÷O ,_e _12 ÷ _.

(VII-S2 )

Letting,

=_--_o+l)_ (Vli-23)

N
OX

can be written as:

(vzz-24)
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As it is recalled, the critical buckling load is then obtained

by treating _ as a continuous variable and seeking the

minimum of Nox as follows:

(vii-25)

Solving for _ and introducing the result into (VII-24), yields

the critical static buckling load of the monocoque cylindrical

shell:

__ (VII-26)

Thus a reduction to the monocoque cylindrical shell checks

out. The last few steps follow the treatment of the monocoque

cylindrical shell given by Volmlr [493and are only listed

here as a means of comparing it with the eccentrically

reinforced cylindrical shell, It is well to remember that the

mode numbers m and n are undetermined and do not appear in

the critical load expression.

Let us return to the eccentrically reinforced cylindrical

shell and consider the expression for Nox (VII-20).

A set of positive integer pairs m and n (_ and_ ) corresponds

to a set of Nox values. The smallest element in the Nox-Set

is the critical static buckling load.

A minimization of the Nox expression is not as easily achieved

as in the case of the monocoque shell. Instead of trying to

arrive at a closed-form solution for Noxc, it seems more straight-
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forward to write a relatively simple computer program which

accepts all geometry and material input parameters, calculates

N according to (VII-20) for a whole range of pairs m and n,
ox

the lowest such value being the critical static buckling load.

It must be kept in mind that the influence of boundary conditions

has been neglected in this treatment.

4. Determination of the Classical Static Buckling

Load for Card's Stringer Shell.

A separate computer program that executes the task prescribed

above is not included in this dissertation, since it is

relatively easy written from the program given in Appendix B,

where all the parameters appearing in the_z expressions of (VII-19)

are already available.

Table(VII-l) below presents the results Of such calculations,

obtained for Card's shell, internally and externally stiffened.

Of the many calculated values of Nox , only a few of

the lowest values are given.

1

I

2

2

5

6

6

7

Nox:1tI1;STgF.
[_li_l

706

8oo

849

755

[#lz,g

1176

1138

1928

1610

1.67

1.42

2.27

2.14

4

0.1:579

0.1316

0.2632

0.2256

Table (VII-l) : Classical Static Buckling Loads for Card's Shell.
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The quantity _ in the table will be discussed in more detail

in the next section._ is defined as the ratio of the buckling

load of the externally reinforced shell to that of the inter-

nally stiffened cylinder:

_o_ _Z (VII-27)

might be appropriately called the stiffener location effective-

ness, since it gives a measure of the effectiveness of putting

the stiffeners externally.

Comparing the data of the table with Card's measured results,

one finds good agreement for the mode numbers m=2 and n=6.

Following the established criterion, however, we have to pick

the lowest values, which occur for m=l and n=5. These values

are on the low side, particularly low for the externally stiffened

shell, where it doesn't matter much whether one picks the

"true low" for m=l and n=6, or selects m=l and n=5. It is

apparently the mode number m that affects the buckling load

for the externally stiffened Card shell in a drastic way.

We might therefore conclude, that the classical static analysis

provides good results in connection with some experimental

knowledge about the mode numbers, particularly m.

In the case of the monocoque cylindrical shell it has been

shown C2_ that clamping of the ends somewhat increases the

buckling load, the increase being more pronounced for shorter

shells. The radial displacement assumption (VII-7), on which
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the classical theory is based, corresponds to the slmply-suppor-

ted boundary conditions. The classical theory would therefore

inherently predict somewhat lower buckling loads than might

be expected with a corresponding theory that takes clamped

boundary conditions into account.

The calculated data therefore suggest that clamping seems to

play an even more important role in the case of the eccentrically

reinforced cylindrical shell. This is intuitively not surpri-

sing,since the stringers might be looked upon as an array of

clamped columns.

5. The Effect of the Mode Numbers on the Stiffener

Location Effectiveness.

The effect of the stiffener eccentricities on Nox is seen

clearly from equation (VII-20). The term in parentheses,con-

taining the S's, is the important one. The expression for

Nox EXT. is the same as (VII-20), except for a sign change

in the S quantities. Assuming the same mode numbers for the

internally and the externally stiffened cylindrical shell,

the stiffener location effectiveness can be written in the form:

(vii28)

It must be noted that the eccentricity parameters S must be

taken positive for the development in this section, since
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the minus sign for external stiffening is already incorporated

into the above expression.

Let us introduce the abbreviation,

(VII-29)

so that the stiffener location effectiveness can be written as:

+ _' (VII-30)

I -f,

For the case of a "strlnger-only" cylindrical shell, Pl can

be simplified somewhat. Writing it as PlS for this particular

case and expressing it in terms of n and _ , it can be shown

to be:

;Rv ([

The Poisson ratio appears since 2 S12/SII _ v in the case of

a stringer-only shell.

It is interesting to observe that PlS becomes negative for

I
aspect ratios _ >_ (> 1.83 for v=0.3), so that the stiffener

location effectiveness becomes less than one by (VII-30).

It is therefore theoretically possible that internally reinforced

stringer shells may yield higher buckling loads than their

externally stiffened counterparts, if the buckling aspect

ratio exceeds a certain limit.
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Recalling the physical meaning of _ =b/a, this would imply

that the buckles would have to stretch out considerably in the

circumferential direction, as compared with the axial direction.

On the other hand, a particular shell is expected to show

an optimum stiffener location effectiveness for a certain

pair of mode numbers. Figure (VII-2) presents a graphical

optimization chart for Card's shell. _ is plotted versus _ ,

with n as a parameter. The graph is arranged such that points

on the _ = _C_ curves can be located which correspond to inte-

ger values of m and n. This was done simply by plotting

_ _ , or m=m(_), in the same diagram with common

_-axis, and labelling the straight lines with its correspon-

ding n-values.

As an illustration, let us see whether we can get into the

peak region with some reasonable pair m; n. Selecting for

example m=3 on the ordinate axis (See Figure), we move hori-

zontally over until we intersect the ray n=7, where the latter

is chosen since its curve _=_C_exhibits the highest peak;

we then move vertically to intersect the _-curve for n=7.

The resulting stiffener location effectiveness is therefore

around 2.5, which is about as much, as can be obtained.

Figure (VII-2) also exhibits the sensitivity of N
ox EXT

to changes in mode numbers. In the peak region, N ox EXT

will increase for increasing n up to n=7, and then decrease

again. This peak region is in the range of 0.2_#_ 0.5 .
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f t

"11

2

0
o o_ 1 As 2

Fi_ure_(Vll-2) : Stiffener Location Effectiveness Optimization

Chart for Card's Shell.
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1. Summary.

Chapters I and II provide the theoretical basis for the dynamic

treatment of an eccentrically reinforced shallow cylindrical

shell with closely spaced stiffeners and rings. This basis is

provided by a new set of field equations which are shown to

reduce to known equations in the literature.

Chapter III extends the field equations to include initial

imperfections.

In Chapter IV, a radial displacement assumption is made on the

basis of expected buckling pattern and initial imperfections

are assumed in "spatial harmony" with the total displacements.

A stress function is derived which satisfies the compatibility

equation for the assumed radial displacements.

In Chapter V, the problem of a clamped eccentrically reinforced

cylindrical shell is taken up, where the dynamic axial load

results from some prescribed rate of endshortening. The

dynamic equilibrium equations are being satisfied in the

sen_ of Bubnov-Galerkin which results in a system of two non-

linear second-order differential equations in the buckling

pattern amplitudes. These important equations are then discussed

in great detail. The reduction to the case of dynamic buckling

of a column is shown. The chapter ends with a description of

three distinct periods in the range of these equations, during

which some physical insight may be obtained from certain

simplifications.
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In Chapter VI, the specific case of Card's stringer shell is

treated on a numerical basis. Results based on the Runge-Kutta

method are shown to be contrary to physical interpretations

and "apparent" dynamic buckling occurs due to instability of

the Runge-Kutta method. A combined Runge-Kutta Predictor-Co-

rector method leads to dynamic buckling loads which are in

agreement with intuitive physical expectations. The remaining

portion of this chapter is devoted to a discussion of the

influence of various factors on the critical dynamic buckling

load, namely rotatory inertia, the magnitude of the constant

rate of endshortening, the size of the initial imperfections,

the direction of the initial imperfections and the time constant

of the exponentially decaying rate of endshortening.

Chapter VII is concerned with static buckling in contradistinction

to the other chapters and has been added mainly to give a

more complete treatment of the eccentrically reinforced

circular cylindrical shell. It is shown that Card's static

test buckling load for the internally reinforced shell is

theoretically predicted quite closely by a "static" rate of

endshortening with initial imperfections of the order of

manufacturing tolerances. Static buckling equations are derived

from the field equations and a separation into prebuckling and

buckling is made. A linear classic Donnell-type equation is

derived, and classical buckling loads for Card's shell are

compared with test results. The effect of the mode numbers is

discussed and the concept of stiffener location effectiveness

is explored in detail.
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2. Conclusions.

Since no closed-form solution appears to be possible for the

dynamic stability of an eccentrically reinforced cylindrical

shell, conclusions must be based on relatively few numerical

results for some specific shell.

- On the basis of available data for Card's stringer shell,

we may conclude that rotatory inertia can be neglected in

determining the critical dynamic buckling load. For other,

cases it seems advisable to include it in the first numeri-

cal calculations.

- As expected, the magnitude of V o for constant rate of end-

shortening plays an important role. Magnifications of the

static buckling loads of the order of two and three were

obtained for the internally reinforced shell for Vo=50 ips

and for Vo=100 ips, as compared with Card's static test

results. These magnifications are considerably less for the

externally stiffened shell, the reason being, that the cri-

tical dynamic buckling load is associated with different

mode numbers for that shell as compared with the internally

reinforced one. Card's static tests gave the same mode numbers

for both shells. If the same mode numbers are taken for a

basis of comparison from Table (VI-4), the range of these

magnifications is similar to the one for the internally

reinforced shell.

- The size of the imperfection amplitudes affects the critical

dynamic buckling load drastically, as evidenced from Table (VI-4).
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Starting with values of reasonable manufacturing tolerance

(0.001 in), it is seen that an increase to approximately

half the monocoque shell thickness (0.014 in) reduces the

buckling loads by a factor of 1.6-1.8 for the same Vo=lO0 ips.

It is sometimes argued that imperfections are not as important

in reinforced cylindrical shells, since there is more "smeared-

out" thickness available so that manufacturing tolerances

become a smaller percentage than for thin monocoque shells.

If the middle-surface amplitudes of the initial imperfections

are of the sizes indicated, then such drastic reductions are

possible. Whether these magnitudes of the imperfections are

realistic,or not, depends on the method of manufacturing

and assembly.

- The effect of the direction of the initial imperfections

seems to be more of academic interest since imperfections

should be eliminated as well as possible. If they do occur,

one has ordinarily no control over their directions anyway.

The effect of increasing the critical dynamic buckling load

by a negative go is connected with the somewhat artificial

assumption that the initial imperfections are in "spatial

harmony" with the total displacements.

- The effect of an exponentially decaying rate of endshortening

is to reduce the critical dynamic buckling load, as expected.

The amount of reduction depends on the time constant 1/_ .

In the case of Card's shell, a time constant was selected

of the order of the time it takes to reach buckling with

a constant rate of endshortening Vo=100 ips. For the inter-
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nally stiffened shell a reduction occurs to roughly the

values obtained from assuming constant rate of endshortening

Vo=50 ips, while it is somewhat more drastic for the externally

stiffened shell.

- The theory of dynamic buckling yields a static buckling load

for Card's internally stiffened shell which is in close

agreement with the experimental value when "static" values

for V and initial imperfections of the order of manufactu-o

ring tolerances are used.

- Within the scope of the classical static theory and the "stiffener"

assumption of equal mode numbers, it is shown that maximum

stiffener location effectiveness for Card's shell lies within

the aspect ratio range of 0.3_@_ 0.5; the best possible

value (_ = 2.52) occurs for the mode numbers m=3 and n=7.

3. Future Work.

A complex problem like the dynamic stability of eccentrically

reinforced cylindrical shells offers a challenge to many approa-

ches and for each solution, there will be an improved version.

Extensions and improvements of the present work may be classi-

fied into:

- Improvements of the present solution of the same problem

- Extension of the problem to include other loading conditions.

- Extension of the problem to include other reinforcement

configurations.

- Experimental work.
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The present solution could possibly be improved in various

aspects. A more realistic representation of the impact problem

would have to include effects due to wave propagation and the

elastic response should be extended into the plastic range.

Within the scope of the present solution, the initial imperfection

displacement assumption should be made more realistic. It would

be desirable to have radial displacement assumptions which not

only describe a physical buckling pattern, but also satisfy

the given boundary conditions exactly. In addition to the present

free parameters fl and gl' there is a need for additional pa-

rameters. _ and _ should be made to be free parameters also.

Then the mode numbers would become time-dependent in the ana-

lysis. It is of course obvious that any of these suggestions

add considerable complexity to an already lengthy development.

Before plunging into such improvements of the present approach,

it is suggested to check for "passage" of the main bottle necks:

Is it possible to find an integral for the stress function from

the compatibility equation ? Does the assumed radial displace-

ment offer advantages in evaluating the Galerkin integrals, such

as orthogonality relations? What kind of nonlinear coupled

differential equation system is to be expected in the selected

free parameters, and can it be tackled within the state of the

art of numerical methods ?

The scope of the present work is restricted to axial loads re-

sulting from a prescribed rate of endshortening. There are,

of course, many other loading possibilities, including simul-

taneous interaction of various spatial load distributions.
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Generally speaking, we might look at the shell contour surfaces

(lateral surfaces and faces) as a closed system which is acted

upon by external disturbances. The boundary of this system

is subjected to certain categories of disturbances which we

choose to classify in the manner shown in Figure (VIII-l).

The reaction of the internal shell system is then the

response (deflection, strain, stress). Extensions of the

present work to other loading situations is therefore possible

in many ways.

The present analysis is limited to closely spaced stiffeners

of an orthogonal array parallel to the generators and circles

of the cylinder. The present analysis might be extended to

include other reinforcement configurations in the same "equi-

valent shell" treatment. For the development of a theory to

investigate "discreet" stiffening elements, the basic develop-

ments of the earlier chapters would have to be changed.

As already indicated, it is entirely feasible to consider

the influence of boundary conditions on the prebuckling de-

formations in the static analysis.

Except for the verification of the static reduction of the

present theory with Card's experimental results, a compari-

son of the "dynamic" theory with practical experiments is

lacking. A short discussion of such possibilities is given

below.

The Applied Mechanics Laboratory of Syracuse University has
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successfully developed a process to make photoelastic mono-

coque cylindrical shells of extreme accuracy within certain

dimensional ranges. No such process is presently available

to produce stiffened cylindrical shells. The writer spent a

considerable amount of time to put together a six-stringer

externally stiffened cylindrical shell. Unfortunately, it

collapsed under the slightest touch of a static load.

The stringers were carefully cut from an available photoelastic

cylinder as segments of the lateral side, thus providing the

appropriate curvature to match the monocoque cylinder to which

these segments were glued. This method is inadequate, however,

toproduce closely-spaced stringer- and ring-stiffened circular

cylindrical shells in large quantities, and it provides for

no variation of the dimensions and geometries of the stiffe-

ner-shell structure. In dynamic testing, it is to be expected that

the sample will be destroyed in each test run, in contrast to

the slowly-run static test, which can be readily confined

to the elastic regime, thus allowing for repetition. In addition,

the presently used photoelastic material seems to lack toughness

for impact-type loading. Embrittlement seems to increase as

storage time increases. A research program is envisioned in

order to study the manufacturing of closely-spaced stiffened

cylinders made out of photoelastic material. Such shells could be

loaded dynamically on the MB-testing machine which allows for pro-

ramming the endshortening. Possibly, the AVC0-Shocktester could

be utilized. The history of the buckling process could be recor-

ded with a high-speed movie camera (Photoeleastic patterns).



APPENDIX A : SOME DETAILS OF THE BUBNOV-GALERKIN PROCEDURE.

The algebraic evalUation of the Bubnov-Galerkin equations

(V-11) is extremely lengthy. While it is not intended to

present all detailed calculations, some intermediate

results are given in this appendix.

H is calculated in (V-10) by substituting the radial displace-

ment terms from (IV-18) and the stress function terms from

(IV-19). In the latter, N_is replaced by (IV-27). Thus,

one obtains:

(continued next page)
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The first Bubnov-Galerkln equation, e.g.

L ZH,_

// ,
o o

is evaluated with H from (A-l). On integrating the above

expression, a great many terms vanish. After a considerable

amount of algebra, the following equation results:

I

•+ ,-f,2o)- (f,_,-,_, = o
(A-2)

where the abbreviation,

(A-3)
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has been introduced.

Inserting the _'s from (IV-lO) and

equation (A-2) solving for _--_ leads to,
' dr= '

N_ from (V-9) into

CA-4)

where a considerable amount of algebra has been omitted,

and where the coefficients B are defined by:

V _Z

' (_'D,,+z_'/'_, _/'Dz_)-_,(_V,,._,._,A,' +/'4,,)8,= _,

(f,, +_qo)

]eaatlzlrt 3 =
($_'f-_,,lJ/tro #_8o_) _

_ Z ,73._.5,.
24#z _,

_ /3"C_'5,._)_.
zA,,_

(A-5)

(A-6)
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(A-8)
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Turning now to the second Bubnov-Galerkin equation, e.g.

LZ_

o 0

and proceeding as before, leads to:

I

/ oiz

:_:_(:,),-:0+

/2gA# ,_A,,g

---_(8,-_o_,)+ , _, = o
16A,,R ,4. dE_

( A-12 )

where the abbreviation,

(A-13)

has been introduced.

The _ 's from (IV-10) and _x from (V-9) are introduced

into (A-12). After considerable algebra, the resulti_

expression is solved for _ , which becomes:
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The coefficients C are defined by:

+ (_*_P')"(f. "I¢) A,,(_'.,, r_,o

A,,

4. ,,,,, - 3A,_%

(A-15)
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3S_ _ 17 _'
Cr,,='"/q-_ A, _ IV_ A_ -q_, (,_"A.,2_"FA,,_-,_'A,;)

r_l J I v_
(A-21)

(A-23)
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i. A Summar_ of Composite Shell Parameters.

I_V)-

Eh =Gh
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z(l-4

d
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s,,-zz _.,,_K.,,__,,=
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2. The Annotated Fortran-Pitt Program

The computer program presented below is written in Fortran-Pitt

Code Language (Pitt:University of Pittsburgh). A few comments

about its structure seem necessary. The coded quantities

follow generally the abbreviations used in the main text of

this dissertation, except that capital letters are used, inclu-

ding the subscripts of these abbreviations. Whenever the

beginning letter of the abbreviated quantity starts with I,J,

K,L,M or N, the letters A, B etc.,are used as the first letter

of the coded quantity, preceding the letters of the usual symbol;

thus, for example, v is coded as ANU, which also shows how the

Greek letters are translated.

The program begins with the generic calculation of FUNCTION SRNX

which is the expression for Nox (V-9). Both, constant and exponen-

tially decaying rates of endshortening, are incorporated.

The SUBROUTINE DRYZ computes the quantities _ and R2, which

are identical with Fl(X,y,z) and F2(x,y,z) of (VI-2). The FUNCTION

and SUBROUTINE procedures are used in the main program.

Two nested DO loops follow. They execute the program several

times. For the given input data of this particular program, all

computations are executes first for n=6, for m-values starting

from 2 up to Io, in steps of 2. The same computation cycles then

follow for n=8 and n=10.

The statement NPROB=I initiates the calculation for the internally

stiffened shell first, followed by that for the externally re-

inforced shell, which is controlled by statement 799 near the
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end of the program.

There follow the geometry and material input parameters for

Card's shell, in this particular case, including the values

for _' fo' go' and V o.

XS and XE are the values of t at the beginning (here zero) and

the end of the anticipated time period for which the computation

is desired. INT is the number of steps into which this period

is derided.

The calculation of the composite shell parameters follows their

definitions, as can be seen from the summary of these parameters

of this Appendix.

The computation of the B's and C's traces their definitions

in Appendix A, except that AMBAR=_ replaces _I and _2" We con-

clude from (A-3) and (A-13) that rotatory inertia is therefore

not include_. The TEMP terms signify temporary storage of the

individual terms that make up the B and C expressions.

The RATIandRAT2 ratios measure the influence of rotatory

inertia. They are numerically smaller than one. The smaller

quantity, RAT2, is utilized in a control statement that offers

the choice of doing the calculations again with the rotatory

inertia included. This is shown by statement 250 later in the

program.

The P-values are computed for use in the FUNCTION SRNX.

HT is the step size as opposed to H, which represents the mono-

coque shell thickness.

The Runge-Kutta method is _nitialized with 790 and the subse-
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quent statements.

The expressions involving ICAL are print control statements.

In this case, only every tenth calculation is printed-out.

The DO 233 stores the four initial "Runge-Kutta" values in the

appropriate locations.

The expressions following statement 180 are the Runge-Kutta

formulas (VI-3).

After statement 233, the computation is continued with the

Predictor (VI-5) and the Corrector formulas (VI-6). CALL DRYZ

involves the computation of the second derivatives of the pre-

dicted y and z, each time. Two more iterations are performed.

ERY and ERZ are the errors between the last predicted and

corrected values and they are printed out.

The DO 237 and the following statements relocate the appropri-

ate values for the next step in the computation.

The actual program is shown on the following pages.
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1

2

3

DIETZ, W. SHELL DYNAMIC RESPONSE

COMPILE FORTRAN, EXECUTE FORTRAN, DUMP

FUNCTION SRNX (T,Y,Z,G,P)

DIMENSION P(4)

IF (G) 2,1,2
S=P(1)*T

GO TO 3

S=P(1)*(I.-EXPEF(-I.*G*TI)/GSRNX=S-P(2)*Y*Y-0.75*P(2 *Z*Z+P(3)*Z+P(4)

RETURN

END

SUBROUTINE DRYZ (XT,Y,Z,B,C,G,RI,R2)

DIMENSION B( 7 ), C( 9 )
RIT=Y* (B( 1 )+B( 5 )*Y**2 )+Z*(B(2 )+(B( 3 )+B( 4)*Z)*Y)+B(7)

R2T=Z* (C(I )+Z*( C( 3 )+C(6)*Z) )+Z*( C( 2 )+Y*( C(4)+C( 5 )*Z) )+C(9 )

IF (G) 10,9,10
9 RI=RIT+B( 6)*Y*XT

R2=R2T+C (7 )*Z*XT+C (8 )*XT

GO TO ll
l0 P--1.*G*XT

PE=( I.- EXPEF( P ))/G

RI=RIT+B (6 )*Y*PE
R2=R2T+C (7 )*Z*PE+C( 8 )*PE

Ii RETURN

END

701
699

177

178

6O

4O

NN=6

MM=0

MM=MM+2

PRINT 177

FORMAT (39X,1HM, 39X,1HN, 40X//)

PRINT 178, MM,NN

FORMAT (38X,I2, 38X,I2///)
NPROB=I

ZS=0.165
PRINT 60

FORMAT (45X, 10HINTERNALLY, 1IX, 9HSTI FFENED, 45X///)

ANU=0.3
GAMA= 0.

E=I0.5"10. **6

ES=10.5"10. **6

GS=4.038"10.*'6
GR=0.

ER=0.

RHO=2.59/I0.0**4

RHOS=2.59/10.0**4
RHOR=0.

H=0.0283
AS=0. 02926
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AR=0.

DDSTR=I.

DLRI N=1000.
SISC=2.2160/10. **4

RIRC=0.

SJS=7.242/I0. **5

RJR=0.
ZR= 0.

AM=MM

AN=NN

R=9.55

CL=38.
F0=0.014

GO--0.014

VC=I00.

XS-0.
XE=0.010

INT=1000

DIMENSION B(7),C(9),P(4)

OIMENSlON X(5) ,Y(5),Z(5) ,O2Y(5) ,O2Z(5)

EQUIVALENCE (FO,F0)

EQUIVALENCE (GO, G0)
EQUIVALENCE (VO,V0)

ANUD=l. -ANU**2

AK=E*H/ANUD
AKNU=ANU*AK

ANUG=l. +ANU

AKG=E*H/( 2. *ANUG )
AKP=AKNU+AKG

AKS=ES*AS/DDSTR

AKR=ER*AR/DLRIN
AKMS=AK+AKS

AKMR=AK+AKR
AMBAR=RHO*H+RHOS*AS/DDSTR+RHOR*AR/DLRIN

D=E*H**3/( 12. *ANUD )
DNU=ANU*D

DG= (1. -ANU )*D

DS=ES/DDSTR* (S IS C+ZS**2*AS )

DR= ER/DLRIN* (RIRC+ZR**2*AR )

DGS=GS*SJS/DDSTR

DGR=GR*RJ R/DLRI N
DMS=D+DS

DMR=D+DR

DMGS=DG+DGS
DMGR=DG+DGR

DI=DG+ (DGS+DGR )/2.

o2=ONU+(DMGR+OMGS)/2.
FSB=ES*AS*ZS/DDSTR

FRB= ER*AR*ZR/DLR IN
DENOM=AKMR*AKMS-AKNU**2

Dll=DMS-AKMR*FSB**2/DENOM

D12 =D2 +AKNU*FSB*FRB/DENOM

D22=DMR-AKMS*FRB**2/DENOM

Sll=AKNU*FSB/DENOM

S12= (AKMR*FSB+AKMS*FRB )/( 2 •*DENOM )
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$22=AKNU*FRB/DENOM
All=AKMS/DENOM
A12=l ./( 2. *AKG)-AKNU/OENOM
A22=AKMR/DENOM
A13=AKNU/DENOM

ALPHI=AM*3.14159/CL

BETAI=AN/R
ALPH2=ALPHI**2

ALPH4=ALPH2**2

BETA2 =BETAl**2

BETA4=BETA2 **2

TEMPl=-( ALPH4*Dll+2. *ALPH2*BETA2*D12+BETA4*D22 )/AMBAR

SUMl=ALPH4*Sll- 2. *ALPH2*BETA2*S12 +BETA4*S22 +ALPH2/R
DENl=ALPH4*All+2. *ALPH2*BETA2*A12 +BETA4*A22

DEN2 =81. *ALPH4*All+l 8. *ALPH2*BETA2*AI2+BETA4*A22

DEN3=ALPH4*All+l 8. *ALPH2 *BETA2 *A12+81. *BETA4*A22
DEN4=A22-A13**2/All

DENS=I 6 o*ALPH4*All+8. *ALPH2 *BETA2 *A12 +BETA4*A22

DEN6=ALPH4*AII+ 8. *ALPH2*BETA2 *A12 +l 6. *BETA4*A22

SUM2=ALPH2+BETA2*A13/All
SUM3=ALPH2 *Sll+l. / (4. *R)

SUM4=ALPH4*Sll- 2 •*ALPH2*BETA2 *S12+BETA4*S22+ALPH2 / (4. *R )

TEMP2 =- SUMl**2/( AMBAR*DEN1 )

TEMP3=ALPH4* (FO**2 +GO**2 )/ (16. *A22*AMBAR)

TEMP4=BETA4* (3 •*FO**2 +5 •*GO*'2/2. )/( 16. *All*AMBAR)

TEMP5=-ALPH2*BETA2*S22*GO/(2.*A22*AMBAR)

TEMP6=SUM2**2* (F0"'2+3 •*GG**2/4. )/( 8. *AMBAR*DEN4 )

TEMP 7=-A13*SUM2 *GO/( 4. *All _R*AMBAR*DEN4 )

TEMP8=-BETA2 *GO/( 4. *All*R*AMBAR)

TEMPg=- BETA2 *GO*SUM3/( 2. *All*AMBAR )

B (1 )=TEMPl+TEMP2 +TEMP 3+TEMP4+TEMPS+TEMP 6+TEMP 7+TEMP8+TEMP9
B10=TEMPI+TEMP2

TEMPl=-ALPH2 *BETA2*FO*SUM1/( AMBAR*DEN1 )

TEMP2=ALPH4*BETA4*FO*GO/( AMBAR*DEN1 )

TEMP3=9 o*ALPH4*BETA4*FO*GO/( 4. *AMBAR*DEN2 )

TEMP4=9 °*ALPH4*BETA4*FO*GO/( 4. *AMBAR*DEN3 )

B (2 )=TEMPl+TEMP2+TEMP 3+TEMP4

TEMPl=2 °*ALPH2*BETA2*SUM1/( AMBAR*DEN1 )

TEMP2 =BETA2 *SUM3/( 2. *All*AMBAR )

TEMP 3=ALPH2 *BETA2 *$22/( 2. *A22 *AMBAR )

TEMP4=BETA2 / (4. *All*R*AMBAR )

TEMPS=A13 *SD-M2 / (4. *All *R*AMBAR*DEN4 )

B (3 )=TEMPl+TEMP2+TEMP 3+TEMP4+TEMP5

TEMPl=-ALPH4_BETA4/( AMBAR*DENI )

TEMP2=- 9. *ALPH4*BETA4/( 4. *AMBAR*DEN2 )
TEMP3=-9. *ALPH4*BETA4/( 4. *AMBAR*DEN3 )

TEMP4=- 5 •*BETA4/( 32 •*All*AMBAR )

TEMP 5=-ALPH4/( 16. *A22 *AMBAR )

TEMP 6=- 3. *S UM2**2 / (32. *AMBAR*DEN4 )

B (4 )=TEMPl+TEMP2+TEMP 3+TEMP4+TEMP5+TEMP6

TEMPI=-ALPH4/( 16. *A22*AMBAR)

TEMP2 =- 3 •*BETA4/( 16. *All*AMBAR )
TEMP3=-SUM2 **2/( 8. *AMBAR*DEN4 )

B (5 )=TEMPl+TEMP2+TEMP3



161

B( 6) =SUM2*VOI( AMBAR*CL*DEN4)
TEMPI=F0* (ALPH4*Dll+2. *ALPH2*BETA2*D12+BETA4*D22 )/AMBAR
TEMP2=F0*SUMI**2/( AMBAR*DEN1)
TEMP 3=- FO*GO*ALPH2 *BETA2 *SUM1/( AMBAR*DEN1 )

B (7 )=TEMPl+TEMP2+TEMP 3
TEMPl=-l 6. * (3 •*ALPH4*Dll+2. *ALPH2*BETA2*D12 +3. *BETA4*D22

l+l ./( 4. *All*R**2 ))/( 9. *AMBAR)

TEMP2=- 32 •*SUM3**2/( 9 •*All*AMBAR )

TEMP3=-l 6. *SUM4**2/( 9 •*AMBAR*DEN1 )

TEMP4=- 32. *BETA4*S22**2/( 9 •*A22*AMBAR)

TEMP5=-8. *BETA2 *GO*SUM3/( 9 •*All*AM-BAR )
TEMP 6=BETA4* (FO**2+GO**2 )/ (9 •*All*AMBAR)

TEMP 7=- 8. *ALPH2 *BETA2 *$22 *GO/( 9 •*A22*AMBAR )

TEMP 8=ALPH4* (F0**2+G0**2 )/ (9 •*A22*AMBAR )

TEMP9=- 8. *ALPH2*BETA2 *GO*SUM4/( 9 •*AMBAR*DEN1 )
TEM10=2. *ALPH4*BETA4*GO**2/( 9 •*AMBAR*DEN1 )

TEMll=ALPH4*G0**2/( 144. *A22*AMBAR)
TEM12 =BETA4*C 0"'2 / (144. *All *AMBAR )

TEM13=ALPH4*BETA4*GO**2_ (18. *EMBAR*DEN5 )
TEM14=ALPH4*BETA4*G0**2/( 18. *AMBAR*DEN6 )

TEM15=SUM2"'2 * (F0"'2+3. *G0"'2/4. )/( 6. *AMBAR*DEN4 )

TEM16=- A13*G 0*SUM2 / (3 •*All *R*AMBAR*DEN4 )

TEM17=BETA4 * (F0"'2+3. *G0"'2/4. )/ (6. *All*AMBAR )

TEM18= -BETA2 + GO/( 3. *All *R*AMBAR )

TEM19 =- 4. *A13**2/( 9 •*All **2 *R**2*AMBAR*DEN4 )

C_ 1 )=TEMPI+TEMP2+TEMP3+TEMP4+TEMPS+TEMP6+TEMP7+TEMPS+TEMP9+TEM10+

1TEMll+TEM12 +TEM13+TEM14+TEM15+TEM16+TEM17+TEM18+TEM19

C10=TEMPI+TEMP2 +TEMP 3+TEMP4+TEM19

TEMPl=-l 6. *ALPH2*BETA2*FO*SUM1/( 9 •*AMBAR*DEN1 )

TEMP2 =l 6. *ALPH4*BETA4*FO*GO/( 9 •*AMBAR*DEN1 )

TEMP 3=4. *ALPH4*BETA4*FO*GO/( AMBAR*DEN2 )

TEMP4=4. *ALPH4*BETA4*FO*GO/( AMBAR*DEN3 )

C (2 )=TEMPl+TEMP2+TEMP3+TEMP4

TEMPl=4. *BETA2*SUM3/( 3 •*All*AMBAR)

TEMP2=4. *ALPH2*BETA2*SUM4/( 3 •*AMBAR*DEN1 )

TEMP 3=4 .*ALPH2*BETA2*S22/( 3 •*A22*AMBAR )

TEMP4=A13*SUM2 / (2. *All*R*AMBAR*DEN4 )

TEMP5=BETA2/( 2. *All*R*AMBAR)

C (3 )=TEMPl+TEMP2+TEMP 3+TEMP4+TEMP5

TEMPl=4 o*ALPH2._BETA2 *$22/( 9 •*A22*AMBAR )
TEMP2=l 6. *ALPH2 *BETA2*SUM1/( 9 •*AMBAR*DEN1 )

TEMP3=2. *BETA2 / (9. *All*R*AMBAR )
TEMP4=2. *A13*SUM2 / (9 •*All*R*AMBAR*DEN4 )

TEMP5=4. *BETA2*SUM3/( 9 •*All*AMBAR )

C (4 )=TEMPl+TEMP2+TEMP3+TEMP4+T_MP5

TEMPl=-l 6. *ALPH4*BETA4/( 9 •*AMBAR*DEN1 )

TEMP2 =- 4. *ALPH4*BETA4/( AMBAR*DEN2 )

TEMP3 =-4.*ALPH4*BETA4/(AMBAR*DEN3 )

TEMP4=- BETA4/( 9. *All*AMBAR )

TEMP5=-ALPH4/( 9 •*A22*AMBAR )

TEMP6=- SUM2 **2/( 6. *AMBAR*DEN4 )

TEMP 7=-BETA4/( 6. *All*AMBAR )

C (5 )=TEMPl+TEMP2+TEMP3+TEMP4+TEMP5+TEMP6+TEMP7



790

8O

162

TEMPl=-35.*BETA4/(144.*All*AMBAR)

TEMP2=-17.*ALPH4/(144.*A22*AMBAR)

TEMP3=-2.*ALPH4*BETA4/(9.*AMBAR*DEN1)
TEMP4=-ALPH4*BETA4/(18.*AMBAR*DENS)

TEMPS=-ALPH4*BETA4/(18.*AMBAR*DEN6)
TEMP6=-SUM2**2/(8.*AMBAR*DEN4)

C(6)=TEMPI+TEMP2+TEMP3+TEMP4+TEMPS+TEMP6

C(7)=4.*SUM2*VO/(3.*AMBAR*CL*DEN4)

C(8)=-16.*A13*VO/(9.*All*R*AMBAR*CL*DEN4)

TEMPl=16.*GO*(3.*ALPH4*Dll+2.*ALPH2*BETA2*D12+3.*BETA4*D22

l+l./(4.*All*R**2))/(9.*AMBAR)

TEMP2=32.*GO*SUM3**2/(9.*AlI*AMBAR)

TEMP3=-4.*BETA2*(FO**2+G0**2)*SUM3/(9.*All*AMBAR)
TEMP4=16.*GO*SUM4**2/(9.*AMBAR*DEN1)

TEMPS=-4.*ALPH2*BETA2*GO**2*SUM4/(9.*AMBAR*DEN1)
TEMP6=-4.*ALPH2*BETA2*S22*(FO**2+GO**2)/(9.*A22*AMBAR)

TEMP7=32.*BETA4*GO*S22**2/(9.*A22*AMBAR)

TEMP8=-2.*BETA2*(FO**2+3.*GO**2/4.)/(9.*AII*R*AMBAR)
TEMPg=-2.*A13*SUM2*(FO**2+3.*GO**2/4.)/(9.*All*R*AMBAR*DEN4)

TEM10=4.*A13**2*GO/(9.*All**2*R**2*AMBAR*DEN4)

C(9)=TEMPI+TEMP2+TEMP3+TEMP4+TEMPS+TEMP6+TEMP7+TEMP8
I+TEMP_+TEM10

B61=SUM2*VO/(AMBAR*CL*DEN4)

AIMBA=RHO*H**3/12.+RHOS*(SISC+AS*ZS**2)/DDSTR+RHOR*(RIRC

I+AR*ZR**Z)/DLRIN

AMBAl=AMBAR+AIMBA* (ALPH2+BETA2 )

AMBA2 =AMBAR+AIMBA*4. * (ALPH2 +BETA2 )/3 •

RATI=AMBAR/AMBA1

RAT2=AMBAR/AMBA2

FINDING THE VALUES OF P

P(1)=V0/(DEN4*CL)

P( 2 )=SUM2/( 8. *DENt )
P(3)=AI3/(4.*AII*R*DEN4)

P(4)=P(2)*FO*FO+O.75*P(2)*GO*GO-P(3)*GO
SINT=INT

HT=(XE-XS)/SINT
X(1)=-HT

 (1)=FO
DELY=0.

Z(1)=GO

DELZ=0.

DY=0.

DDY=0.

DZ=0.

DDZ=0.
Y2=FO

Z2=GO

Y3=FO

Z3=GO
PRINT 80

FORMAT (43X,35HB'S IN SEQUENTIAL
PRINT 41,B

ORDER,42X//)



163

41 FORMAT(//6E20.8/3E20.8///)
PRINT 90

90 FORMAT(43X,35HC'S IN
PRINT 41, C
PRINT i00

i00 FORMAT(33X,57HB'S WITH ZERO
17)=0), 30X//)

PRINT 121,BI0,B(3) ,B(4),B(5),B(6)
121 FORMAT(E20.8,20X,4E20.8////)

PRINT II0
II0 FORMAT(33X,57HC'S WITH ZERO

I(9)=0),30X//)

122

366

367

179
61

150

180

SEQUENTIAL 0RDER,42X//)

IMPERFECTIONS (B(2)=B(

IMPERFECTIONS (C(2)=C

PRINT 122, CI0,C(3),C(4),C(5),C(6) C(7) C(8)
FORMAT (E20.8,2 0X, 4E20.8/2E20.8///1 '

TBl=2. *3.14159/SQRTF (ABSF( B( 1 )))

TCl=2. *3.14159/SQRTF (ABSF( C (1 )))
PRINT 366

FORMAT (17X, 4HP (1 ),20X, 4HP (2 ),20X, 4HP (3 ), 21X, 3HTBI, 21X, 3HTCI, 3X//)
PRINT 367, P(1),P(2),P(3),TBI,TCI
FORMAT (5E24.8//)

PRINT 77

77 FORMAT (//10X, 4HTIME,13X, 3HNOX,15X,2HFI,13X, 7HFI-RES. ,12X,2HGI,
ii 3X ,7HGI-RES., llX, 4HZETA, 4X///)
I CAL=I 0

X(I)=X( I-I HT

Y( I )=Y( I-i )+DELY

Z( I )=Z( I-I )+DELZ

I CAL= I CAL+I

ENX=SRNX (X( I ),Y( I ),Z( I ),GAMA, P)
ZETA= (Y (I )+Z (I ))/H

IF (ICAL-10) 180,61,61

PRINT 150,X(I),ENX,Y(I),Z(I),ZETA

FORMAT (IX, 3E17.8,17X, El7.8,17X, E17.8)
ICAL=0

CALL ORYZ (X(I),Y(I),Z(I),B,C,GAMA,D2Y(I),D2Z(I))
A_KI=HT*D2Y (I )

ALI=HT*D2Z( I )

x2=x( I )+HTI2.
DY=DY+DDY

DZ=DZ+DDZ

Y2 =Y2 +HT*DY/2. +HT *AKI / 8.

Z2 =Z2 +HT*DZ/2. +HT*ALI/8.

CALL DRYZ (X2, Y2, Z2, B, C, GAMA, F1, F2 )
AK2=HT*F1

AL2=HT*F2

X3=X (I )+HT

Y3=Y3+HT*DY+HT*AK2/2.

Z3=Z3+HT*DZ+HT*AL2/2.

CALL DRYZ (X3,Y3,Z3,B,C,GAMA,FI,F2)
AK3=HT*FI

AL3=HT*F2

DELY=HT* (DY+( AKI+2. *AK2 )/6. )



164

233

235

240

236

238
239

237

25o
73

65

52

799

DELZ=HT* (DZ+( ALl+2. *AL2 )/6. )
DDY= (AKl+4. *AK2 +AK3 )/6.

OOZ= (ALl+4. *AL2 +AL3 )/6.

CONTINUE

XU=X( 5 )
XU=XU+HT

ICAL=ICAL +l

YP=2. *Y( 4 )-Y( 2 )+4 ./3. *HT**2* (O2Y( 5 )+O2Y (4 )+O2Y (3 ) )

ZP=2. *Z( 4 )-Z( 2 )+4./3. *HT**2* (O2Z( 5 )+O2Z( 4 )+O2Z( 3 ))

CALL DRYZ (XU.YP, ZP, B, C, GAMA, D2YP, D2ZP )
YC=2. *Y( 5 )-Y(4) +HT**2/12 .*( D2YP+l 0. *D2Y( 5 )+D2Y (4) )

ZC=2. *Z( 5 )-Z( 4 )+HT**2112 .* (D2ZP+I0. *O2Z( 5 )+O2Z (4) )

CALL DRYZ (XU,YC,ZC,B,C,GAMA,D2CY,D2CZ)
YCC=2. *Y (5) -Y (4 )+HT**2/12. * (D2 CY+I 0. *D2 Y (5 )+D2 Y (4 ))

ZCC=2. *Z( 5 )-Z(4) +HT**2/12. *( 02 CZ+10. *D2Z( 5 )+D2Z(4) )

CALL DRYZ (XU,YCC,ZCC,B,C,GAMA,D2CCY,D2CCZ)

ZU=2. *Z( 5 )-Y(4) +HT**2/12. *( D2 CCY+10. *D2Y( 5 )+D2Y (4) )
ZU=2. *Z (5 )- Z (4 )+HT**2/12. * (D2 CCZ+10. *D2 Z (5 )+D2 Z (4 ))

IF (ICAL-10) 239,240,240

ZETA= (YU+ZU )/H

ENX=SRNX (XU, YU, ZU, GAMA, P)
ERY=ABSF (YU-YCC)

ERZ=ABSF (ZU-ZCC)
ICAL =0

PRINT 236,XU, ENX, YU, ERY, ZU, ERZ, ZETA
FORMAT (IX, 7E17.8)

IF (ABSF(ZETA)-200.) 238,250.250

IF (XU-XE) 239,250,250

DO 237 K=3,5
X(K-I)=X(K)

Y(K-I)=Y(K)
Z(K-I)=Z(K)
D2Y(K-I )=D2Y(K)

D2Z(K-I )=D2Z(K)
x(5)=xu
Y(5)=xu
z (5 )=zu
D2Y( 5 )=D2 CCY

D2Z( 5)=D2CCZ
GO TO 235

IF (RAT2-0.99) 73 799,799
IF (ABSF(B(6)-B611-1.0E-6) 65,65,799

DO 51 J=l,7
ImtT,_ )=B (j )*RAT1
DO 52 J=l,9
c(J )=c(j )*RAT2
B10=BI 0*RAT1

C10= Cl 0*RAT2

GO TO 790
NPROB=NPROB+I

ZS=-0.165
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5o

70

199

7oo

702

999

IF (NPROB-2) 50,50,199

PRINT 70

FORMAT (//45X, 10HEXTERNALLY, 1IX, 9HSTI FFENED, 45X///)
GO TO 40

MM=AM

NN=AN

IF (MM-10) 699,700,700
IF (NN-10) 702,999,999
NN=NN+2

GO TO 701
STOP

END
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